Metamath Proof Explorer


Theorem limsupbnd1

Description: If a sequence is eventually at most A , then the limsup is also at most A . (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / n which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupbnd.1 φ B
limsupbnd.2 φ F : B *
limsupbnd.3 φ A *
limsupbnd1.4 φ k j B k j F j A
Assertion limsupbnd1 φ lim sup F A

Proof

Step Hyp Ref Expression
1 limsupbnd.1 φ B
2 limsupbnd.2 φ F : B *
3 limsupbnd.3 φ A *
4 limsupbnd1.4 φ k j B k j F j A
5 1 adantr φ k B
6 2 adantr φ k F : B *
7 simpr φ k k
8 3 adantr φ k A *
9 eqid n sup F n +∞ * * < = n sup F n +∞ * * <
10 9 limsupgle B F : B * k A * n sup F n +∞ * * < k A j B k j F j A
11 5 6 7 8 10 syl211anc φ k n sup F n +∞ * * < k A j B k j F j A
12 reex V
13 12 ssex B B V
14 1 13 syl φ B V
15 xrex * V
16 15 a1i φ * V
17 fex2 F : B * B V * V F V
18 2 14 16 17 syl3anc φ F V
19 limsupcl F V lim sup F *
20 18 19 syl φ lim sup F *
21 20 xrleidd φ lim sup F lim sup F
22 9 limsuple B F : B * lim sup F * lim sup F lim sup F k lim sup F n sup F n +∞ * * < k
23 1 2 20 22 syl3anc φ lim sup F lim sup F k lim sup F n sup F n +∞ * * < k
24 21 23 mpbid φ k lim sup F n sup F n +∞ * * < k
25 24 r19.21bi φ k lim sup F n sup F n +∞ * * < k
26 20 adantr φ k lim sup F *
27 9 limsupgf n sup F n +∞ * * < : *
28 27 a1i φ n sup F n +∞ * * < : *
29 28 ffvelrnda φ k n sup F n +∞ * * < k *
30 xrletr lim sup F * n sup F n +∞ * * < k * A * lim sup F n sup F n +∞ * * < k n sup F n +∞ * * < k A lim sup F A
31 26 29 8 30 syl3anc φ k lim sup F n sup F n +∞ * * < k n sup F n +∞ * * < k A lim sup F A
32 25 31 mpand φ k n sup F n +∞ * * < k A lim sup F A
33 11 32 sylbird φ k j B k j F j A lim sup F A
34 33 rexlimdva φ k j B k j F j A lim sup F A
35 4 34 mpd φ lim sup F A