Metamath Proof Explorer


Theorem limsupbnd1f

Description: If a sequence is eventually at most A , then the limsup is also at most A . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupbnd1f.1 _ j F
limsupbnd1f.2 φ B
limsupbnd1f.3 φ F : B *
limsupbnd1f.4 φ A *
limsupbnd1f.5 φ k j B k j F j A
Assertion limsupbnd1f φ lim sup F A

Proof

Step Hyp Ref Expression
1 limsupbnd1f.1 _ j F
2 limsupbnd1f.2 φ B
3 limsupbnd1f.3 φ F : B *
4 limsupbnd1f.4 φ A *
5 limsupbnd1f.5 φ k j B k j F j A
6 breq1 k = i k j i j
7 6 imbi1d k = i k j F j A i j F j A
8 7 ralbidv k = i j B k j F j A j B i j F j A
9 nfv l i j F j A
10 nfv j i l
11 nfcv _ j l
12 1 11 nffv _ j F l
13 nfcv _ j
14 nfcv _ j A
15 12 13 14 nfbr j F l A
16 10 15 nfim j i l F l A
17 breq2 j = l i j i l
18 fveq2 j = l F j = F l
19 18 breq1d j = l F j A F l A
20 17 19 imbi12d j = l i j F j A i l F l A
21 9 16 20 cbvralw j B i j F j A l B i l F l A
22 21 a1i k = i j B i j F j A l B i l F l A
23 8 22 bitrd k = i j B k j F j A l B i l F l A
24 23 cbvrexvw k j B k j F j A i l B i l F l A
25 5 24 sylib φ i l B i l F l A
26 2 3 4 25 limsupbnd1 φ lim sup F A