Metamath Proof Explorer


Theorem limsupbnd2

Description: If a sequence is eventually greater than A , then the limsup is also greater than A . (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupbnd.1 φ B
limsupbnd.2 φ F : B *
limsupbnd.3 φ A *
limsupbnd2.4 φ sup B * < = +∞
limsupbnd2.5 φ k j B k j A F j
Assertion limsupbnd2 φ A lim sup F

Proof

Step Hyp Ref Expression
1 limsupbnd.1 φ B
2 limsupbnd.2 φ F : B *
3 limsupbnd.3 φ A *
4 limsupbnd2.4 φ sup B * < = +∞
5 limsupbnd2.5 φ k j B k j A F j
6 ressxr *
7 1 6 sstrdi φ B *
8 supxrunb1 B * n j B n j sup B * < = +∞
9 7 8 syl φ n j B n j sup B * < = +∞
10 4 9 mpbird φ n j B n j
11 ifcl m k if k m m k
12 breq1 n = if k m m k n j if k m m k j
13 12 rexbidv n = if k m m k j B n j j B if k m m k j
14 13 rspccva n j B n j if k m m k j B if k m m k j
15 10 11 14 syl2an φ m k j B if k m m k j
16 r19.29 j B k j A F j j B if k m m k j j B k j A F j if k m m k j
17 simplrr φ m k j B k
18 simprl φ m k m
19 18 adantr φ m k j B m
20 max1 k m k if k m m k
21 17 19 20 syl2anc φ m k j B k if k m m k
22 19 17 11 syl2anc φ m k j B if k m m k
23 1 adantr φ m k B
24 23 sselda φ m k j B j
25 letr k if k m m k j k if k m m k if k m m k j k j
26 17 22 24 25 syl3anc φ m k j B k if k m m k if k m m k j k j
27 21 26 mpand φ m k j B if k m m k j k j
28 27 imim1d φ m k j B k j A F j if k m m k j A F j
29 28 impd φ m k j B k j A F j if k m m k j A F j
30 max2 k m m if k m m k
31 17 19 30 syl2anc φ m k j B m if k m m k
32 letr m if k m m k j m if k m m k if k m m k j m j
33 19 22 24 32 syl3anc φ m k j B m if k m m k if k m m k j m j
34 31 33 mpand φ m k j B if k m m k j m j
35 34 adantld φ m k j B k j A F j if k m m k j m j
36 eqid n sup F n +∞ * * < = n sup F n +∞ * * <
37 36 limsupgf n sup F n +∞ * * < : *
38 37 ffvelrni m n sup F n +∞ * * < m *
39 38 adantl φ m n sup F n +∞ * * < m *
40 39 xrleidd φ m n sup F n +∞ * * < m n sup F n +∞ * * < m
41 40 adantrr φ m k n sup F n +∞ * * < m n sup F n +∞ * * < m
42 2 adantr φ m k F : B *
43 18 38 syl φ m k n sup F n +∞ * * < m *
44 36 limsupgle B F : B * m n sup F n +∞ * * < m * n sup F n +∞ * * < m n sup F n +∞ * * < m j B m j F j n sup F n +∞ * * < m
45 23 42 18 43 44 syl211anc φ m k n sup F n +∞ * * < m n sup F n +∞ * * < m j B m j F j n sup F n +∞ * * < m
46 41 45 mpbid φ m k j B m j F j n sup F n +∞ * * < m
47 46 r19.21bi φ m k j B m j F j n sup F n +∞ * * < m
48 35 47 syld φ m k j B k j A F j if k m m k j F j n sup F n +∞ * * < m
49 29 48 jcad φ m k j B k j A F j if k m m k j A F j F j n sup F n +∞ * * < m
50 3 ad2antrr φ m k j B A *
51 42 ffvelrnda φ m k j B F j *
52 43 adantr φ m k j B n sup F n +∞ * * < m *
53 xrletr A * F j * n sup F n +∞ * * < m * A F j F j n sup F n +∞ * * < m A n sup F n +∞ * * < m
54 50 51 52 53 syl3anc φ m k j B A F j F j n sup F n +∞ * * < m A n sup F n +∞ * * < m
55 49 54 syld φ m k j B k j A F j if k m m k j A n sup F n +∞ * * < m
56 55 rexlimdva φ m k j B k j A F j if k m m k j A n sup F n +∞ * * < m
57 16 56 syl5 φ m k j B k j A F j j B if k m m k j A n sup F n +∞ * * < m
58 15 57 mpan2d φ m k j B k j A F j A n sup F n +∞ * * < m
59 58 anassrs φ m k j B k j A F j A n sup F n +∞ * * < m
60 59 rexlimdva φ m k j B k j A F j A n sup F n +∞ * * < m
61 60 ralrimdva φ k j B k j A F j m A n sup F n +∞ * * < m
62 5 61 mpd φ m A n sup F n +∞ * * < m
63 36 limsuple B F : B * A * A lim sup F m A n sup F n +∞ * * < m
64 1 2 3 63 syl3anc φ A lim sup F m A n sup F n +∞ * * < m
65 62 64 mpbird φ A lim sup F