Metamath Proof Explorer


Theorem limsupcl

Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2020)

Ref Expression
Assertion limsupcl F V lim sup F *

Proof

Step Hyp Ref Expression
1 elex F V F V
2 df-limsup lim sup = f V sup ran k sup f k +∞ * * < * <
3 eqid k sup f k +∞ * * < = k sup f k +∞ * * <
4 inss2 f k +∞ * *
5 supxrcl f k +∞ * * sup f k +∞ * * < *
6 4 5 mp1i k sup f k +∞ * * < *
7 3 6 fmpti k sup f k +∞ * * < : *
8 frn k sup f k +∞ * * < : * ran k sup f k +∞ * * < *
9 7 8 ax-mp ran k sup f k +∞ * * < *
10 infxrcl ran k sup f k +∞ * * < * sup ran k sup f k +∞ * * < * < *
11 9 10 mp1i f V sup ran k sup f k +∞ * * < * < *
12 2 11 fmpti lim sup : V *
13 12 ffvelrni F V lim sup F *
14 1 13 syl F V lim sup F *