Metamath Proof Explorer


Theorem limsupgf

Description: Closure of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis limsupval.1 G = k sup F k +∞ * * <
Assertion limsupgf G : *

Proof

Step Hyp Ref Expression
1 limsupval.1 G = k sup F k +∞ * * <
2 inss2 F k +∞ * *
3 supxrcl F k +∞ * * sup F k +∞ * * < *
4 2 3 mp1i k sup F k +∞ * * < *
5 1 4 fmpti G : *