Metamath Proof Explorer


Theorem limsupgle

Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis limsupval.1 G = k sup F k +∞ * * <
Assertion limsupgle B F : B * C A * G C A j B C j F j A

Proof

Step Hyp Ref Expression
1 limsupval.1 G = k sup F k +∞ * * <
2 1 limsupgval C G C = sup F C +∞ * * <
3 2 3ad2ant2 B F : B * C A * G C = sup F C +∞ * * <
4 3 breq1d B F : B * C A * G C A sup F C +∞ * * < A
5 inss2 F C +∞ * *
6 simp3 B F : B * C A * A *
7 supxrleub F C +∞ * * A * sup F C +∞ * * < A x F C +∞ * x A
8 5 6 7 sylancr B F : B * C A * sup F C +∞ * * < A x F C +∞ * x A
9 imassrn F C +∞ ran F
10 simp1r B F : B * C A * F : B *
11 10 frnd B F : B * C A * ran F *
12 9 11 sstrid B F : B * C A * F C +∞ *
13 df-ss F C +∞ * F C +∞ * = F C +∞
14 12 13 sylib B F : B * C A * F C +∞ * = F C +∞
15 imadmres F dom F C +∞ = F C +∞
16 14 15 eqtr4di B F : B * C A * F C +∞ * = F dom F C +∞
17 16 raleqdv B F : B * C A * x F C +∞ * x A x F dom F C +∞ x A
18 10 ffnd B F : B * C A * F Fn B
19 10 fdmd B F : B * C A * dom F = B
20 19 ineq2d B F : B * C A * C +∞ dom F = C +∞ B
21 dmres dom F C +∞ = C +∞ dom F
22 incom B C +∞ = C +∞ B
23 20 21 22 3eqtr4g B F : B * C A * dom F C +∞ = B C +∞
24 inss1 B C +∞ B
25 23 24 eqsstrdi B F : B * C A * dom F C +∞ B
26 breq1 x = F j x A F j A
27 26 ralima F Fn B dom F C +∞ B x F dom F C +∞ x A j dom F C +∞ F j A
28 18 25 27 syl2anc B F : B * C A * x F dom F C +∞ x A j dom F C +∞ F j A
29 23 eleq2d B F : B * C A * j dom F C +∞ j B C +∞
30 elin j B C +∞ j B j C +∞
31 29 30 bitrdi B F : B * C A * j dom F C +∞ j B j C +∞
32 simpl2 B F : B * C A * j B C
33 simp1l B F : B * C A * B
34 33 sselda B F : B * C A * j B j
35 elicopnf C j C +∞ j C j
36 35 baibd C j j C +∞ C j
37 32 34 36 syl2anc B F : B * C A * j B j C +∞ C j
38 37 pm5.32da B F : B * C A * j B j C +∞ j B C j
39 31 38 bitrd B F : B * C A * j dom F C +∞ j B C j
40 39 imbi1d B F : B * C A * j dom F C +∞ F j A j B C j F j A
41 impexp j B C j F j A j B C j F j A
42 40 41 bitrdi B F : B * C A * j dom F C +∞ F j A j B C j F j A
43 42 ralbidv2 B F : B * C A * j dom F C +∞ F j A j B C j F j A
44 17 28 43 3bitrd B F : B * C A * x F C +∞ * x A j B C j F j A
45 4 8 44 3bitrd B F : B * C A * G C A j B C j F j A