Metamath Proof Explorer


Theorem limsupgre

Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupval.1 G = k sup F k +∞ * * <
limsupgre.z Z = M
Assertion limsupgre M F : Z lim sup F < +∞ G :

Proof

Step Hyp Ref Expression
1 limsupval.1 G = k sup F k +∞ * * <
2 limsupgre.z Z = M
3 xrltso < Or *
4 3 supex sup F k +∞ * * < V
5 4 a1i M F : Z lim sup F < +∞ k sup F k +∞ * * < V
6 1 a1i M F : Z lim sup F < +∞ G = k sup F k +∞ * * <
7 1 limsupgval a G a = sup F a +∞ * * <
8 7 adantl M F : Z lim sup F < +∞ a G a = sup F a +∞ * * <
9 simpl3 M F : Z lim sup F < +∞ a lim sup F < +∞
10 uzssz M
11 2 10 eqsstri Z
12 zssre
13 11 12 sstri Z
14 13 a1i M F : Z lim sup F < +∞ a Z
15 simpl2 M F : Z lim sup F < +∞ a F : Z
16 ressxr *
17 fss F : Z * F : Z *
18 15 16 17 sylancl M F : Z lim sup F < +∞ a F : Z *
19 pnfxr +∞ *
20 19 a1i M F : Z lim sup F < +∞ a +∞ *
21 1 limsuplt Z F : Z * +∞ * lim sup F < +∞ n G n < +∞
22 14 18 20 21 syl3anc M F : Z lim sup F < +∞ a lim sup F < +∞ n G n < +∞
23 9 22 mpbid M F : Z lim sup F < +∞ a n G n < +∞
24 fzfi M n Fin
25 15 adantr M F : Z lim sup F < +∞ a n G n < +∞ F : Z
26 elfzuz m M n m M
27 26 2 eleqtrrdi m M n m Z
28 ffvelrn F : Z m Z F m
29 25 27 28 syl2an M F : Z lim sup F < +∞ a n G n < +∞ m M n F m
30 29 ralrimiva M F : Z lim sup F < +∞ a n G n < +∞ m M n F m
31 fimaxre3 M n Fin m M n F m r m M n F m r
32 24 30 31 sylancr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r
33 simpr M F : Z lim sup F < +∞ a a
34 33 ad2antrr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r a
35 1 limsupgf G : *
36 35 ffvelrni a G a *
37 34 36 syl M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G a *
38 simprl M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r r
39 16 38 sselid M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r r *
40 simprl M F : Z lim sup F < +∞ a n G n < +∞ n
41 40 adantr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r n
42 35 ffvelrni n G n *
43 41 42 syl M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G n *
44 39 43 ifcld M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r if G n r r G n *
45 19 a1i M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r +∞ *
46 40 ad2antrr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z n
47 13 a1i M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r Z
48 47 sselda M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i
49 43 xrleidd M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G n G n
50 18 ad2antrr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r F : Z *
51 1 limsupgle Z F : Z * n G n * G n G n i Z n i F i G n
52 47 50 41 43 51 syl211anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G n G n i Z n i F i G n
53 49 52 mpbid M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z n i F i G n
54 53 r19.21bi M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z n i F i G n
55 54 imp M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z n i F i G n
56 46 42 syl M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z G n *
57 39 adantr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z r *
58 xrmax1 G n * r * G n if G n r r G n
59 56 57 58 syl2anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z G n if G n r r G n
60 50 ffvelrnda M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z F i *
61 44 adantr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z if G n r r G n *
62 xrletr F i * G n * if G n r r G n * F i G n G n if G n r r G n F i if G n r r G n
63 60 56 61 62 syl3anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z F i G n G n if G n r r G n F i if G n r r G n
64 59 63 mpan2d M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z F i G n F i if G n r r G n
65 64 adantr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z n i F i G n F i if G n r r G n
66 55 65 mpd M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z n i F i if G n r r G n
67 fveq2 m = i F m = F i
68 67 breq1d m = i F m r F i r
69 simprr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r m M n F m r
70 69 ad2antrr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i n m M n F m r
71 simpr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i Z
72 71 2 eleqtrdi M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i M
73 41 flcld M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r n
74 73 adantr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z n
75 elfz5 i M n i M n i n
76 72 74 75 syl2anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i M n i n
77 11 71 sselid M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i
78 flge n i i n i n
79 46 77 78 syl2anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i n i n
80 76 79 bitr4d M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i M n i n
81 80 biimpar M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i n i M n
82 68 70 81 rspcdva M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i n F i r
83 xrmax2 G n * r * r if G n r r G n
84 43 39 83 syl2anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r r if G n r r G n
85 84 adantr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z r if G n r r G n
86 xrletr F i * r * if G n r r G n * F i r r if G n r r G n F i if G n r r G n
87 60 57 61 86 syl3anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z F i r r if G n r r G n F i if G n r r G n
88 85 87 mpan2d M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z F i r F i if G n r r G n
89 88 adantr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i n F i r F i if G n r r G n
90 82 89 mpd M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z i n F i if G n r r G n
91 46 48 66 90 lecasei M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z F i if G n r r G n
92 91 a1d M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z a i F i if G n r r G n
93 92 ralrimiva M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r i Z a i F i if G n r r G n
94 1 limsupgle Z F : Z * a if G n r r G n * G a if G n r r G n i Z a i F i if G n r r G n
95 47 50 34 44 94 syl211anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G a if G n r r G n i Z a i F i if G n r r G n
96 93 95 mpbird M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G a if G n r r G n
97 38 ltpnfd M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r r < +∞
98 simplrr M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G n < +∞
99 breq1 r = if G n r r G n r < +∞ if G n r r G n < +∞
100 breq1 G n = if G n r r G n G n < +∞ if G n r r G n < +∞
101 99 100 ifboth r < +∞ G n < +∞ if G n r r G n < +∞
102 97 98 101 syl2anc M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r if G n r r G n < +∞
103 37 44 45 96 102 xrlelttrd M F : Z lim sup F < +∞ a n G n < +∞ r m M n F m r G a < +∞
104 32 103 rexlimddv M F : Z lim sup F < +∞ a n G n < +∞ G a < +∞
105 23 104 rexlimddv M F : Z lim sup F < +∞ a G a < +∞
106 8 105 eqbrtrrd M F : Z lim sup F < +∞ a sup F a +∞ * * < < +∞
107 imassrn F a +∞ ran F
108 15 frnd M F : Z lim sup F < +∞ a ran F
109 107 108 sstrid M F : Z lim sup F < +∞ a F a +∞
110 109 16 sstrdi M F : Z lim sup F < +∞ a F a +∞ *
111 df-ss F a +∞ * F a +∞ * = F a +∞
112 110 111 sylib M F : Z lim sup F < +∞ a F a +∞ * = F a +∞
113 112 109 eqsstrd M F : Z lim sup F < +∞ a F a +∞ *
114 simpl1 M F : Z lim sup F < +∞ a M
115 flcl a a
116 115 adantl M F : Z lim sup F < +∞ a a
117 116 peano2zd M F : Z lim sup F < +∞ a a + 1
118 117 114 ifcld M F : Z lim sup F < +∞ a if M a + 1 a + 1 M
119 114 zred M F : Z lim sup F < +∞ a M
120 117 zred M F : Z lim sup F < +∞ a a + 1
121 max1 M a + 1 M if M a + 1 a + 1 M
122 119 120 121 syl2anc M F : Z lim sup F < +∞ a M if M a + 1 a + 1 M
123 eluz2 if M a + 1 a + 1 M M M if M a + 1 a + 1 M M if M a + 1 a + 1 M
124 114 118 122 123 syl3anbrc M F : Z lim sup F < +∞ a if M a + 1 a + 1 M M
125 124 2 eleqtrrdi M F : Z lim sup F < +∞ a if M a + 1 a + 1 M Z
126 15 fdmd M F : Z lim sup F < +∞ a dom F = Z
127 125 126 eleqtrrd M F : Z lim sup F < +∞ a if M a + 1 a + 1 M dom F
128 118 zred M F : Z lim sup F < +∞ a if M a + 1 a + 1 M
129 fllep1 a a a + 1
130 129 adantl M F : Z lim sup F < +∞ a a a + 1
131 max2 M a + 1 a + 1 if M a + 1 a + 1 M
132 119 120 131 syl2anc M F : Z lim sup F < +∞ a a + 1 if M a + 1 a + 1 M
133 33 120 128 130 132 letrd M F : Z lim sup F < +∞ a a if M a + 1 a + 1 M
134 elicopnf a if M a + 1 a + 1 M a +∞ if M a + 1 a + 1 M a if M a + 1 a + 1 M
135 134 adantl M F : Z lim sup F < +∞ a if M a + 1 a + 1 M a +∞ if M a + 1 a + 1 M a if M a + 1 a + 1 M
136 128 133 135 mpbir2and M F : Z lim sup F < +∞ a if M a + 1 a + 1 M a +∞
137 inelcm if M a + 1 a + 1 M dom F if M a + 1 a + 1 M a +∞ dom F a +∞
138 127 136 137 syl2anc M F : Z lim sup F < +∞ a dom F a +∞
139 imadisj F a +∞ = dom F a +∞ =
140 139 necon3bii F a +∞ dom F a +∞
141 138 140 sylibr M F : Z lim sup F < +∞ a F a +∞
142 112 141 eqnetrd M F : Z lim sup F < +∞ a F a +∞ *
143 supxrre1 F a +∞ * F a +∞ * sup F a +∞ * * < sup F a +∞ * * < < +∞
144 113 142 143 syl2anc M F : Z lim sup F < +∞ a sup F a +∞ * * < sup F a +∞ * * < < +∞
145 106 144 mpbird M F : Z lim sup F < +∞ a sup F a +∞ * * <
146 8 145 eqeltrd M F : Z lim sup F < +∞ a G a
147 5 6 146 fmpt2d M F : Z lim sup F < +∞ G :