Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval.1 |
|
2 |
|
limsupgre.z |
|
3 |
|
xrltso |
|
4 |
3
|
supex |
|
5 |
4
|
a1i |
|
6 |
1
|
a1i |
|
7 |
1
|
limsupgval |
|
8 |
7
|
adantl |
|
9 |
|
simpl3 |
|
10 |
|
uzssz |
|
11 |
2 10
|
eqsstri |
|
12 |
|
zssre |
|
13 |
11 12
|
sstri |
|
14 |
13
|
a1i |
|
15 |
|
simpl2 |
|
16 |
|
ressxr |
|
17 |
|
fss |
|
18 |
15 16 17
|
sylancl |
|
19 |
|
pnfxr |
|
20 |
19
|
a1i |
|
21 |
1
|
limsuplt |
|
22 |
14 18 20 21
|
syl3anc |
|
23 |
9 22
|
mpbid |
|
24 |
|
fzfi |
|
25 |
15
|
adantr |
|
26 |
|
elfzuz |
|
27 |
26 2
|
eleqtrrdi |
|
28 |
|
ffvelrn |
|
29 |
25 27 28
|
syl2an |
|
30 |
29
|
ralrimiva |
|
31 |
|
fimaxre3 |
|
32 |
24 30 31
|
sylancr |
|
33 |
|
simpr |
|
34 |
33
|
ad2antrr |
|
35 |
1
|
limsupgf |
|
36 |
35
|
ffvelrni |
|
37 |
34 36
|
syl |
|
38 |
|
simprl |
|
39 |
16 38
|
sselid |
|
40 |
|
simprl |
|
41 |
40
|
adantr |
|
42 |
35
|
ffvelrni |
|
43 |
41 42
|
syl |
|
44 |
39 43
|
ifcld |
|
45 |
19
|
a1i |
|
46 |
40
|
ad2antrr |
|
47 |
13
|
a1i |
|
48 |
47
|
sselda |
|
49 |
43
|
xrleidd |
|
50 |
18
|
ad2antrr |
|
51 |
1
|
limsupgle |
|
52 |
47 50 41 43 51
|
syl211anc |
|
53 |
49 52
|
mpbid |
|
54 |
53
|
r19.21bi |
|
55 |
54
|
imp |
|
56 |
46 42
|
syl |
|
57 |
39
|
adantr |
|
58 |
|
xrmax1 |
|
59 |
56 57 58
|
syl2anc |
|
60 |
50
|
ffvelrnda |
|
61 |
44
|
adantr |
|
62 |
|
xrletr |
|
63 |
60 56 61 62
|
syl3anc |
|
64 |
59 63
|
mpan2d |
|
65 |
64
|
adantr |
|
66 |
55 65
|
mpd |
|
67 |
|
fveq2 |
|
68 |
67
|
breq1d |
|
69 |
|
simprr |
|
70 |
69
|
ad2antrr |
|
71 |
|
simpr |
|
72 |
71 2
|
eleqtrdi |
|
73 |
41
|
flcld |
|
74 |
73
|
adantr |
|
75 |
|
elfz5 |
|
76 |
72 74 75
|
syl2anc |
|
77 |
11 71
|
sselid |
|
78 |
|
flge |
|
79 |
46 77 78
|
syl2anc |
|
80 |
76 79
|
bitr4d |
|
81 |
80
|
biimpar |
|
82 |
68 70 81
|
rspcdva |
|
83 |
|
xrmax2 |
|
84 |
43 39 83
|
syl2anc |
|
85 |
84
|
adantr |
|
86 |
|
xrletr |
|
87 |
60 57 61 86
|
syl3anc |
|
88 |
85 87
|
mpan2d |
|
89 |
88
|
adantr |
|
90 |
82 89
|
mpd |
|
91 |
46 48 66 90
|
lecasei |
|
92 |
91
|
a1d |
|
93 |
92
|
ralrimiva |
|
94 |
1
|
limsupgle |
|
95 |
47 50 34 44 94
|
syl211anc |
|
96 |
93 95
|
mpbird |
|
97 |
38
|
ltpnfd |
|
98 |
|
simplrr |
|
99 |
|
breq1 |
|
100 |
|
breq1 |
|
101 |
99 100
|
ifboth |
|
102 |
97 98 101
|
syl2anc |
|
103 |
37 44 45 96 102
|
xrlelttrd |
|
104 |
32 103
|
rexlimddv |
|
105 |
23 104
|
rexlimddv |
|
106 |
8 105
|
eqbrtrrd |
|
107 |
|
imassrn |
|
108 |
15
|
frnd |
|
109 |
107 108
|
sstrid |
|
110 |
109 16
|
sstrdi |
|
111 |
|
df-ss |
|
112 |
110 111
|
sylib |
|
113 |
112 109
|
eqsstrd |
|
114 |
|
simpl1 |
|
115 |
|
flcl |
|
116 |
115
|
adantl |
|
117 |
116
|
peano2zd |
|
118 |
117 114
|
ifcld |
|
119 |
114
|
zred |
|
120 |
117
|
zred |
|
121 |
|
max1 |
|
122 |
119 120 121
|
syl2anc |
|
123 |
|
eluz2 |
|
124 |
114 118 122 123
|
syl3anbrc |
|
125 |
124 2
|
eleqtrrdi |
|
126 |
15
|
fdmd |
|
127 |
125 126
|
eleqtrrd |
|
128 |
118
|
zred |
|
129 |
|
fllep1 |
|
130 |
129
|
adantl |
|
131 |
|
max2 |
|
132 |
119 120 131
|
syl2anc |
|
133 |
33 120 128 130 132
|
letrd |
|
134 |
|
elicopnf |
|
135 |
134
|
adantl |
|
136 |
128 133 135
|
mpbir2and |
|
137 |
|
inelcm |
|
138 |
127 136 137
|
syl2anc |
|
139 |
|
imadisj |
|
140 |
139
|
necon3bii |
|
141 |
138 140
|
sylibr |
|
142 |
112 141
|
eqnetrd |
|
143 |
|
supxrre1 |
|
144 |
113 142 143
|
syl2anc |
|
145 |
106 144
|
mpbird |
|
146 |
8 145
|
eqeltrd |
|
147 |
5 6 146
|
fmpt2d |
|