Step |
Hyp |
Ref |
Expression |
1 |
|
limsupmnflem.a |
|
2 |
|
limsupmnflem.f |
|
3 |
|
limsupmnflem.g |
|
4 |
|
nfv |
|
5 |
|
reex |
|
6 |
5
|
a1i |
|
7 |
6 1
|
ssexd |
|
8 |
4 7 2 3
|
limsupval3 |
|
9 |
3
|
rneqi |
|
10 |
9
|
infeq1i |
|
11 |
10
|
a1i |
|
12 |
8 11
|
eqtrd |
|
13 |
12
|
eqeq1d |
|
14 |
|
nfv |
|
15 |
2
|
fimassd |
|
16 |
15
|
adantr |
|
17 |
16
|
supxrcld |
|
18 |
4 14 17
|
infxrunb3rnmpt |
|
19 |
15
|
adantr |
|
20 |
|
ressxr |
|
21 |
20
|
a1i |
|
22 |
21
|
sselda |
|
23 |
|
supxrleub |
|
24 |
19 22 23
|
syl2anc |
|
25 |
24
|
adantr |
|
26 |
2
|
ffnd |
|
27 |
26
|
ad3antrrr |
|
28 |
|
simplr |
|
29 |
20
|
sseli |
|
30 |
29
|
ad3antlr |
|
31 |
|
pnfxr |
|
32 |
31
|
a1i |
|
33 |
20
|
a1i |
|
34 |
1
|
sselda |
|
35 |
33 34
|
sseldd |
|
36 |
35
|
ad4ant13 |
|
37 |
|
simpr |
|
38 |
34
|
ltpnfd |
|
39 |
38
|
ad4ant13 |
|
40 |
30 32 36 37 39
|
elicod |
|
41 |
27 28 40
|
fnfvimad |
|
42 |
41
|
adantllr |
|
43 |
|
simpllr |
|
44 |
|
breq1 |
|
45 |
44
|
rspcva |
|
46 |
42 43 45
|
syl2anc |
|
47 |
46
|
adantl4r |
|
48 |
47
|
ex |
|
49 |
48
|
ralrimiva |
|
50 |
49
|
ex |
|
51 |
|
nfcv |
|
52 |
26
|
adantr |
|
53 |
|
simpr |
|
54 |
51 52 53
|
fvelimad |
|
55 |
54
|
ad4ant14 |
|
56 |
|
nfv |
|
57 |
|
nfra1 |
|
58 |
56 57
|
nfan |
|
59 |
|
nfv |
|
60 |
29
|
adantr |
|
61 |
31
|
a1i |
|
62 |
|
elinel2 |
|
63 |
62
|
adantl |
|
64 |
60 61 63
|
icogelbd |
|
65 |
64
|
adantlr |
|
66 |
|
elinel1 |
|
67 |
66
|
adantl |
|
68 |
|
rspa |
|
69 |
67 68
|
syldan |
|
70 |
69
|
adantll |
|
71 |
65 70
|
mpd |
|
72 |
|
id |
|
73 |
72
|
eqcomd |
|
74 |
73
|
adantl |
|
75 |
|
simpl |
|
76 |
74 75
|
eqbrtrd |
|
77 |
76
|
ex |
|
78 |
71 77
|
syl |
|
79 |
78
|
adantlll |
|
80 |
79
|
ex |
|
81 |
58 59 80
|
rexlimd |
|
82 |
81
|
imp |
|
83 |
55 82
|
syldan |
|
84 |
83
|
ralrimiva |
|
85 |
84
|
adantllr |
|
86 |
24
|
ad2antrr |
|
87 |
85 86
|
mpbird |
|
88 |
87
|
ex |
|
89 |
88 25
|
sylibd |
|
90 |
50 89
|
impbid |
|
91 |
25 90
|
bitrd |
|
92 |
91
|
rexbidva |
|
93 |
92
|
ralbidva |
|
94 |
13 18 93
|
3bitr2d |
|