| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsuppnfdlem.a |
|
| 2 |
|
limsuppnfdlem.f |
|
| 3 |
|
limsuppnfdlem.u |
|
| 4 |
|
limsuppnfdlem.g |
|
| 5 |
|
reex |
|
| 6 |
5
|
a1i |
|
| 7 |
6 1
|
ssexd |
|
| 8 |
2 7
|
fexd |
|
| 9 |
4
|
limsupval |
|
| 10 |
8 9
|
syl |
|
| 11 |
2
|
ffund |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
2
|
fdmd |
|
| 15 |
14
|
adantr |
|
| 16 |
13 15
|
eleqtrrd |
|
| 17 |
12 16
|
jca |
|
| 18 |
17
|
ad4ant13 |
|
| 19 |
|
simpllr |
|
| 20 |
19
|
rexrd |
|
| 21 |
|
pnfxr |
|
| 22 |
21
|
a1i |
|
| 23 |
1
|
ssrexr |
|
| 24 |
23
|
sselda |
|
| 25 |
24
|
ad4ant13 |
|
| 26 |
|
simpr |
|
| 27 |
1
|
sselda |
|
| 28 |
27
|
ltpnfd |
|
| 29 |
28
|
ad4ant13 |
|
| 30 |
20 22 25 26 29
|
elicod |
|
| 31 |
|
funfvima |
|
| 32 |
18 30 31
|
sylc |
|
| 33 |
2
|
ffvelcdmda |
|
| 34 |
33
|
ad4ant13 |
|
| 35 |
32 34
|
elind |
|
| 36 |
35
|
adantllr |
|
| 37 |
36
|
adantrr |
|
| 38 |
|
simprr |
|
| 39 |
|
breq2 |
|
| 40 |
39
|
rspcev |
|
| 41 |
37 38 40
|
syl2anc |
|
| 42 |
3
|
r19.21bi |
|
| 43 |
42
|
r19.21bi |
|
| 44 |
43
|
an32s |
|
| 45 |
41 44
|
r19.29a |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
inss2 |
|
| 48 |
|
supxrunb3 |
|
| 49 |
47 48
|
mp1i |
|
| 50 |
46 49
|
mpbid |
|
| 51 |
50
|
mpteq2dva |
|
| 52 |
4 51
|
eqtrid |
|
| 53 |
52
|
rneqd |
|
| 54 |
|
eqid |
|
| 55 |
|
ren0 |
|
| 56 |
55
|
a1i |
|
| 57 |
54 56
|
rnmptc |
|
| 58 |
53 57
|
eqtrd |
|
| 59 |
58
|
infeq1d |
|
| 60 |
|
xrltso |
|
| 61 |
|
infsn |
|
| 62 |
60 21 61
|
mp2an |
|
| 63 |
62
|
a1i |
|
| 64 |
10 59 63
|
3eqtrd |
|