Metamath Proof Explorer


Theorem limsuppnflem

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnflem.j _ j F
limsuppnflem.a φ A
limsuppnflem.f φ F : A *
Assertion limsuppnflem φ lim sup F = +∞ x k j A k j x F j

Proof

Step Hyp Ref Expression
1 limsuppnflem.j _ j F
2 limsuppnflem.a φ A
3 limsuppnflem.f φ F : A *
4 id φ φ
5 imnan k j ¬ x F j ¬ k j x F j
6 5 ralbii j A k j ¬ x F j j A ¬ k j x F j
7 ralnex j A ¬ k j x F j ¬ j A k j x F j
8 6 7 bitri j A k j ¬ x F j ¬ j A k j x F j
9 8 rexbii k j A k j ¬ x F j k ¬ j A k j x F j
10 rexnal k ¬ j A k j x F j ¬ k j A k j x F j
11 9 10 bitri k j A k j ¬ x F j ¬ k j A k j x F j
12 11 rexbii x k j A k j ¬ x F j x ¬ k j A k j x F j
13 rexnal x ¬ k j A k j x F j ¬ x k j A k j x F j
14 12 13 bitri x k j A k j ¬ x F j ¬ x k j A k j x F j
15 14 biimpri ¬ x k j A k j x F j x k j A k j ¬ x F j
16 simp1 φ x k j A k j ¬ x F j k j φ x k j A
17 id k j ¬ x F j k j ¬ x F j
18 17 imp k j ¬ x F j k j ¬ x F j
19 18 3adant1 φ x k j A k j ¬ x F j k j ¬ x F j
20 3 ffvelrnda φ j A F j *
21 20 ad4ant14 φ x k j A F j *
22 21 adantr φ x k j A ¬ x F j F j *
23 simpllr φ x k j A x
24 rexr x x *
25 23 24 syl φ x k j A x *
26 25 adantr φ x k j A ¬ x F j x *
27 simpr φ x j A ¬ x F j ¬ x F j
28 20 ad4ant13 φ x j A ¬ x F j F j *
29 24 ad3antlr φ x j A ¬ x F j x *
30 28 29 xrltnled φ x j A ¬ x F j F j < x ¬ x F j
31 27 30 mpbird φ x j A ¬ x F j F j < x
32 31 adantllr φ x k j A ¬ x F j F j < x
33 22 26 32 xrltled φ x k j A ¬ x F j F j x
34 16 19 33 syl2anc φ x k j A k j ¬ x F j k j F j x
35 34 3exp φ x k j A k j ¬ x F j k j F j x
36 35 ralimdva φ x k j A k j ¬ x F j j A k j F j x
37 36 reximdva φ x k j A k j ¬ x F j k j A k j F j x
38 37 reximdva φ x k j A k j ¬ x F j x k j A k j F j x
39 38 imp φ x k j A k j ¬ x F j x k j A k j F j x
40 4 15 39 syl2an φ ¬ x k j A k j x F j x k j A k j F j x
41 reex V
42 41 a1i φ V
43 42 2 ssexd φ A V
44 3 43 fexd φ F V
45 44 limsupcld φ lim sup F *
46 45 ad2antrr φ x k j A k j F j x lim sup F *
47 24 ad2antlr φ x k j A k j F j x x *
48 pnfxr +∞ *
49 48 a1i φ x k j A k j F j x +∞ *
50 2 ad2antrr φ x k j A k j F j x A
51 3 ad2antrr φ x k j A k j F j x F : A *
52 simpr φ x k j A k j F j x k j A k j F j x
53 1 50 51 47 52 limsupbnd1f φ x k j A k j F j x lim sup F x
54 ltpnf x x < +∞
55 54 ad2antlr φ x k j A k j F j x x < +∞
56 46 47 49 53 55 xrlelttrd φ x k j A k j F j x lim sup F < +∞
57 56 rexlimdva2 φ x k j A k j F j x lim sup F < +∞
58 57 imp φ x k j A k j F j x lim sup F < +∞
59 40 58 syldan φ ¬ x k j A k j x F j lim sup F < +∞
60 59 adantlr φ lim sup F = +∞ ¬ x k j A k j x F j lim sup F < +∞
61 id lim sup F = +∞ lim sup F = +∞
62 48 a1i lim sup F = +∞ +∞ *
63 61 62 eqeltrd lim sup F = +∞ lim sup F *
64 63 61 xreqnltd lim sup F = +∞ ¬ lim sup F < +∞
65 64 adantl φ lim sup F = +∞ ¬ lim sup F < +∞
66 65 adantr φ lim sup F = +∞ ¬ x k j A k j x F j ¬ lim sup F < +∞
67 60 66 condan φ lim sup F = +∞ x k j A k j x F j
68 67 ex φ lim sup F = +∞ x k j A k j x F j
69 2 adantr φ x k j A k j x F j A
70 3 adantr φ x k j A k j x F j F : A *
71 simpr φ x k j A k j x F j x k j A k j x F j
72 1 69 70 71 limsuppnfd φ x k j A k j x F j lim sup F = +∞
73 72 ex φ x k j A k j x F j lim sup F = +∞
74 68 73 impbid φ lim sup F = +∞ x k j A k j x F j