Metamath Proof Explorer


Theorem limsupreuzmpt

Description: Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupreuzmpt.j j φ
limsupreuzmpt.m φ M
limsupreuzmpt.z Z = M
limsupreuzmpt.b φ j Z B
Assertion limsupreuzmpt φ lim sup j Z B x k Z j k x B x j Z B x

Proof

Step Hyp Ref Expression
1 limsupreuzmpt.j j φ
2 limsupreuzmpt.m φ M
3 limsupreuzmpt.z Z = M
4 limsupreuzmpt.b φ j Z B
5 nfmpt1 _ j j Z B
6 1 4 fmptd2f φ j Z B : Z
7 5 2 3 6 limsupreuz φ lim sup j Z B y i Z j i y j Z B j y j Z j Z B j y
8 nfv j i Z
9 1 8 nfan j φ i Z
10 simpll φ i Z j i φ
11 3 uztrn2 i Z j i j Z
12 11 adantll φ i Z j i j Z
13 eqid j Z B = j Z B
14 13 a1i φ j Z B = j Z B
15 14 4 fvmpt2d φ j Z j Z B j = B
16 10 12 15 syl2anc φ i Z j i j Z B j = B
17 16 breq2d φ i Z j i y j Z B j y B
18 9 17 rexbida φ i Z j i y j Z B j j i y B
19 18 ralbidva φ i Z j i y j Z B j i Z j i y B
20 19 rexbidv φ y i Z j i y j Z B j y i Z j i y B
21 breq1 y = x y B x B
22 21 rexbidv y = x j i y B j i x B
23 22 ralbidv y = x i Z j i y B i Z j i x B
24 fveq2 i = k i = k
25 24 rexeqdv i = k j i x B j k x B
26 25 cbvralvw i Z j i x B k Z j k x B
27 26 a1i y = x i Z j i x B k Z j k x B
28 23 27 bitrd y = x i Z j i y B k Z j k x B
29 28 cbvrexvw y i Z j i y B x k Z j k x B
30 29 a1i φ y i Z j i y B x k Z j k x B
31 20 30 bitrd φ y i Z j i y j Z B j x k Z j k x B
32 15 breq1d φ j Z j Z B j y B y
33 1 32 ralbida φ j Z j Z B j y j Z B y
34 33 rexbidv φ y j Z j Z B j y y j Z B y
35 breq2 y = x B y B x
36 35 ralbidv y = x j Z B y j Z B x
37 36 cbvrexvw y j Z B y x j Z B x
38 37 a1i φ y j Z B y x j Z B x
39 34 38 bitrd φ y j Z j Z B j y x j Z B x
40 31 39 anbi12d φ y i Z j i y j Z B j y j Z j Z B j y x k Z j k x B x j Z B x
41 7 40 bitrd φ lim sup j Z B x k Z j k x B x j Z B x