Metamath Proof Explorer


Theorem limsupub

Description: If the limsup is not +oo , then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupub.j j φ
limsupub.e _ j F
limsupub.a φ A
limsupub.f φ F : A *
limsupub.n φ lim sup F +∞
Assertion limsupub φ x k j A k j F j x

Proof

Step Hyp Ref Expression
1 limsupub.j j φ
2 limsupub.e _ j F
3 limsupub.a φ A
4 limsupub.f φ F : A *
5 limsupub.n φ lim sup F +∞
6 3 adantr φ x k j A k j x < F j A
7 4 adantr φ x k j A k j x < F j F : A *
8 nfv j x
9 1 8 nfan j φ x
10 simprl φ x j A k j x < F j k j
11 simpllr φ x j A x < F j x
12 rexr x x *
13 11 12 syl φ x j A x < F j x *
14 4 ffvelrnda φ j A F j *
15 14 ad4ant13 φ x j A x < F j F j *
16 simpr φ x j A x < F j x < F j
17 13 15 16 xrltled φ x j A x < F j x F j
18 17 adantrl φ x j A k j x < F j x F j
19 10 18 jca φ x j A k j x < F j k j x F j
20 19 ex φ x j A k j x < F j k j x F j
21 20 ex φ x j A k j x < F j k j x F j
22 9 21 reximdai φ x j A k j x < F j j A k j x F j
23 22 ralimdv φ x k j A k j x < F j k j A k j x F j
24 23 ralimdva φ x k j A k j x < F j x k j A k j x F j
25 24 imp φ x k j A k j x < F j x k j A k j x F j
26 2 6 7 25 limsuppnfd φ x k j A k j x < F j lim sup F = +∞
27 5 neneqd φ ¬ lim sup F = +∞
28 27 adantr φ x k j A k j x < F j ¬ lim sup F = +∞
29 26 28 pm2.65da φ ¬ x k j A k j x < F j
30 imnan k j ¬ x < F j ¬ k j x < F j
31 30 ralbii j A k j ¬ x < F j j A ¬ k j x < F j
32 ralnex j A ¬ k j x < F j ¬ j A k j x < F j
33 31 32 bitri j A k j ¬ x < F j ¬ j A k j x < F j
34 33 rexbii k j A k j ¬ x < F j k ¬ j A k j x < F j
35 rexnal k ¬ j A k j x < F j ¬ k j A k j x < F j
36 34 35 bitri k j A k j ¬ x < F j ¬ k j A k j x < F j
37 36 rexbii x k j A k j ¬ x < F j x ¬ k j A k j x < F j
38 rexnal x ¬ k j A k j x < F j ¬ x k j A k j x < F j
39 37 38 bitri x k j A k j ¬ x < F j ¬ x k j A k j x < F j
40 29 39 sylibr φ x k j A k j ¬ x < F j
41 nfv j k
42 9 41 nfan j φ x k
43 14 ad4ant14 φ x k j A F j *
44 simpllr φ x k j A x
45 44 rexrd φ x k j A x *
46 43 45 xrlenltd φ x k j A F j x ¬ x < F j
47 46 imbi2d φ x k j A k j F j x k j ¬ x < F j
48 42 47 ralbida φ x k j A k j F j x j A k j ¬ x < F j
49 48 rexbidva φ x k j A k j F j x k j A k j ¬ x < F j
50 49 rexbidva φ x k j A k j F j x x k j A k j ¬ x < F j
51 40 50 mpbird φ x k j A k j F j x