Metamath Proof Explorer


Theorem limsupval2

Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupval.1 G = k sup F k +∞ * * <
limsupval2.1 φ F V
limsupval2.2 φ A
limsupval2.3 φ sup A * < = +∞
Assertion limsupval2 φ lim sup F = sup G A * <

Proof

Step Hyp Ref Expression
1 limsupval.1 G = k sup F k +∞ * * <
2 limsupval2.1 φ F V
3 limsupval2.2 φ A
4 limsupval2.3 φ sup A * < = +∞
5 1 limsupval F V lim sup F = sup ran G * <
6 2 5 syl φ lim sup F = sup ran G * <
7 imassrn G A ran G
8 1 limsupgf G : *
9 frn G : * ran G *
10 8 9 ax-mp ran G *
11 infxrlb ran G * x ran G sup ran G * < x
12 11 ralrimiva ran G * x ran G sup ran G * < x
13 10 12 mp1i φ x ran G sup ran G * < x
14 ssralv G A ran G x ran G sup ran G * < x x G A sup ran G * < x
15 7 13 14 mpsyl φ x G A sup ran G * < x
16 7 10 sstri G A *
17 infxrcl ran G * sup ran G * < *
18 10 17 ax-mp sup ran G * < *
19 infxrgelb G A * sup ran G * < * sup ran G * < sup G A * < x G A sup ran G * < x
20 16 18 19 mp2an sup ran G * < sup G A * < x G A sup ran G * < x
21 15 20 sylibr φ sup ran G * < sup G A * <
22 ressxr *
23 3 22 sstrdi φ A *
24 supxrunb1 A * n x A n x sup A * < = +∞
25 23 24 syl φ n x A n x sup A * < = +∞
26 4 25 mpbird φ n x A n x
27 infxrcl G A * sup G A * < *
28 16 27 mp1i φ n x A n x sup G A * < *
29 3 sselda φ x A x
30 29 ad2ant2r φ n x A n x x
31 8 ffvelrni x G x *
32 30 31 syl φ n x A n x G x *
33 8 ffvelrni n G n *
34 33 ad2antlr φ n x A n x G n *
35 ffn G : * G Fn
36 8 35 mp1i φ n x A n x G Fn
37 3 ad2antrr φ n x A n x A
38 simprl φ n x A n x x A
39 fnfvima G Fn A x A G x G A
40 36 37 38 39 syl3anc φ n x A n x G x G A
41 infxrlb G A * G x G A sup G A * < G x
42 16 40 41 sylancr φ n x A n x sup G A * < G x
43 simplr φ n x A n x n
44 simprr φ n x A n x n x
45 limsupgord n x n x sup F x +∞ * * < sup F n +∞ * * <
46 43 30 44 45 syl3anc φ n x A n x sup F x +∞ * * < sup F n +∞ * * <
47 1 limsupgval x G x = sup F x +∞ * * <
48 30 47 syl φ n x A n x G x = sup F x +∞ * * <
49 1 limsupgval n G n = sup F n +∞ * * <
50 49 ad2antlr φ n x A n x G n = sup F n +∞ * * <
51 46 48 50 3brtr4d φ n x A n x G x G n
52 28 32 34 42 51 xrletrd φ n x A n x sup G A * < G n
53 52 rexlimdvaa φ n x A n x sup G A * < G n
54 53 ralimdva φ n x A n x n sup G A * < G n
55 26 54 mpd φ n sup G A * < G n
56 8 35 ax-mp G Fn
57 breq2 x = G n sup G A * < x sup G A * < G n
58 57 ralrn G Fn x ran G sup G A * < x n sup G A * < G n
59 56 58 ax-mp x ran G sup G A * < x n sup G A * < G n
60 55 59 sylibr φ x ran G sup G A * < x
61 16 27 ax-mp sup G A * < *
62 infxrgelb ran G * sup G A * < * sup G A * < sup ran G * < x ran G sup G A * < x
63 10 61 62 mp2an sup G A * < sup ran G * < x ran G sup G A * < x
64 60 63 sylibr φ sup G A * < sup ran G * <
65 xrletri3 sup ran G * < * sup G A * < * sup ran G * < = sup G A * < sup ran G * < sup G A * < sup G A * < sup ran G * <
66 18 61 65 mp2an sup ran G * < = sup G A * < sup ran G * < sup G A * < sup G A * < sup ran G * <
67 21 64 66 sylanbrc φ sup ran G * < = sup G A * <
68 6 67 eqtrd φ lim sup F = sup G A * <