Metamath Proof Explorer


Theorem limsupval3

Description: The superior limit of an infinite sequence F of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupval3.1 k φ
limsupval3.2 φ A V
limsupval3.3 φ F : A *
limsupval3.4 G = k sup F k +∞ * <
Assertion limsupval3 φ lim sup F = sup ran G * <

Proof

Step Hyp Ref Expression
1 limsupval3.1 k φ
2 limsupval3.2 φ A V
3 limsupval3.3 φ F : A *
4 limsupval3.4 G = k sup F k +∞ * <
5 3 2 fexd φ F V
6 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
7 6 limsupval F V lim sup F = sup ran k sup F k +∞ * * < * <
8 5 7 syl φ lim sup F = sup ran k sup F k +∞ * * < * <
9 4 a1i φ G = k sup F k +∞ * <
10 3 fimassd φ F k +∞ *
11 df-ss F k +∞ * F k +∞ * = F k +∞
12 10 11 sylib φ F k +∞ * = F k +∞
13 12 eqcomd φ F k +∞ = F k +∞ *
14 13 supeq1d φ sup F k +∞ * < = sup F k +∞ * * <
15 14 adantr φ k sup F k +∞ * < = sup F k +∞ * * <
16 1 15 mpteq2da φ k sup F k +∞ * < = k sup F k +∞ * * <
17 9 16 eqtr2d φ k sup F k +∞ * * < = G
18 17 rneqd φ ran k sup F k +∞ * * < = ran G
19 18 infeq1d φ sup ran k sup F k +∞ * * < * < = sup ran G * <
20 8 19 eqtrd φ lim sup F = sup ran G * <