Metamath Proof Explorer


Theorem limuni

Description: A limit ordinal is its own supremum (union). Lemma 2.13 of Schloeder p. 5. (Contributed by NM, 4-May-1995)

Ref Expression
Assertion limuni LimAA=A

Proof

Step Hyp Ref Expression
1 df-lim LimAOrdAAA=A
2 1 simp3bi LimAA=A