Metamath Proof Explorer


Theorem limuni3

Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005)

Ref Expression
Assertion limuni3 A x A Lim x Lim A

Proof

Step Hyp Ref Expression
1 limeq x = z Lim x Lim z
2 1 rspcv z A x A Lim x Lim z
3 vex z V
4 limelon z V Lim z z On
5 3 4 mpan Lim z z On
6 2 5 syl6com x A Lim x z A z On
7 6 ssrdv x A Lim x A On
8 ssorduni A On Ord A
9 7 8 syl x A Lim x Ord A
10 9 adantl A x A Lim x Ord A
11 n0 A z z A
12 0ellim Lim z z
13 elunii z z A A
14 13 expcom z A z A
15 12 14 syl5 z A Lim z A
16 2 15 syld z A x A Lim x A
17 16 exlimiv z z A x A Lim x A
18 11 17 sylbi A x A Lim x A
19 18 imp A x A Lim x A
20 eluni2 y A z A y z
21 1 rspccv x A Lim x z A Lim z
22 limsuc Lim z y z suc y z
23 22 anbi1d Lim z y z z A suc y z z A
24 elunii suc y z z A suc y A
25 23 24 syl6bi Lim z y z z A suc y A
26 25 expd Lim z y z z A suc y A
27 26 com3r z A Lim z y z suc y A
28 21 27 sylcom x A Lim x z A y z suc y A
29 28 rexlimdv x A Lim x z A y z suc y A
30 20 29 syl5bi x A Lim x y A suc y A
31 30 ralrimiv x A Lim x y A suc y A
32 31 adantl A x A Lim x y A suc y A
33 dflim4 Lim A Ord A A y A suc y A
34 10 19 32 33 syl3anbrc A x A Lim x Lim A