Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
0red |
|
3 |
|
1red |
|
4 |
|
elicc01 |
|
5 |
4
|
simp1bi |
|
6 |
5
|
adantl |
|
7 |
|
difrp |
|
8 |
7
|
biimp3a |
|
9 |
8
|
adantr |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
10 11
|
iccdil |
|
13 |
2 3 6 9 12
|
syl22anc |
|
14 |
1 13
|
mpbid |
|
15 |
|
simpl2 |
|
16 |
|
simpl1 |
|
17 |
15 16
|
resubcld |
|
18 |
17
|
recnd |
|
19 |
18
|
mul02d |
|
20 |
18
|
mulid2d |
|
21 |
19 20
|
oveq12d |
|
22 |
14 21
|
eleqtrd |
|
23 |
6 17
|
remulcld |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
24 25
|
iccshftr |
|
27 |
2 17 23 16 26
|
syl22anc |
|
28 |
22 27
|
mpbid |
|
29 |
6
|
recnd |
|
30 |
15
|
recnd |
|
31 |
29 30
|
mulcld |
|
32 |
16
|
recnd |
|
33 |
29 32
|
mulcld |
|
34 |
31 33 32
|
subadd23d |
|
35 |
29 30 32
|
subdid |
|
36 |
35
|
oveq1d |
|
37 |
|
1re |
|
38 |
|
resubcl |
|
39 |
37 6 38
|
sylancr |
|
40 |
39 16
|
remulcld |
|
41 |
40
|
recnd |
|
42 |
41 31
|
addcomd |
|
43 |
|
1cnd |
|
44 |
43 29 32
|
subdird |
|
45 |
32
|
mulid2d |
|
46 |
45
|
oveq1d |
|
47 |
44 46
|
eqtrd |
|
48 |
47
|
oveq2d |
|
49 |
42 48
|
eqtrd |
|
50 |
34 36 49
|
3eqtr4d |
|
51 |
32
|
addid2d |
|
52 |
30 32
|
npcand |
|
53 |
51 52
|
oveq12d |
|
54 |
28 50 53
|
3eltr3d |
|