Metamath Proof Explorer


Theorem lincmb01cmp

Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion lincmb01cmp A B A < B T 0 1 1 T A + T B A B

Proof

Step Hyp Ref Expression
1 simpr A B A < B T 0 1 T 0 1
2 0red A B A < B T 0 1 0
3 1red A B A < B T 0 1 1
4 elicc01 T 0 1 T 0 T T 1
5 4 simp1bi T 0 1 T
6 5 adantl A B A < B T 0 1 T
7 difrp A B A < B B A +
8 7 biimp3a A B A < B B A +
9 8 adantr A B A < B T 0 1 B A +
10 eqid 0 B A = 0 B A
11 eqid 1 B A = 1 B A
12 10 11 iccdil 0 1 T B A + T 0 1 T B A 0 B A 1 B A
13 2 3 6 9 12 syl22anc A B A < B T 0 1 T 0 1 T B A 0 B A 1 B A
14 1 13 mpbid A B A < B T 0 1 T B A 0 B A 1 B A
15 simpl2 A B A < B T 0 1 B
16 simpl1 A B A < B T 0 1 A
17 15 16 resubcld A B A < B T 0 1 B A
18 17 recnd A B A < B T 0 1 B A
19 18 mul02d A B A < B T 0 1 0 B A = 0
20 18 mulid2d A B A < B T 0 1 1 B A = B A
21 19 20 oveq12d A B A < B T 0 1 0 B A 1 B A = 0 B A
22 14 21 eleqtrd A B A < B T 0 1 T B A 0 B A
23 6 17 remulcld A B A < B T 0 1 T B A
24 eqid 0 + A = 0 + A
25 eqid B - A + A = B - A + A
26 24 25 iccshftr 0 B A T B A A T B A 0 B A T B A + A 0 + A B - A + A
27 2 17 23 16 26 syl22anc A B A < B T 0 1 T B A 0 B A T B A + A 0 + A B - A + A
28 22 27 mpbid A B A < B T 0 1 T B A + A 0 + A B - A + A
29 6 recnd A B A < B T 0 1 T
30 15 recnd A B A < B T 0 1 B
31 29 30 mulcld A B A < B T 0 1 T B
32 16 recnd A B A < B T 0 1 A
33 29 32 mulcld A B A < B T 0 1 T A
34 31 33 32 subadd23d A B A < B T 0 1 T B - T A + A = T B + A - T A
35 29 30 32 subdid A B A < B T 0 1 T B A = T B T A
36 35 oveq1d A B A < B T 0 1 T B A + A = T B - T A + A
37 1re 1
38 resubcl 1 T 1 T
39 37 6 38 sylancr A B A < B T 0 1 1 T
40 39 16 remulcld A B A < B T 0 1 1 T A
41 40 recnd A B A < B T 0 1 1 T A
42 41 31 addcomd A B A < B T 0 1 1 T A + T B = T B + 1 T A
43 1cnd A B A < B T 0 1 1
44 43 29 32 subdird A B A < B T 0 1 1 T A = 1 A T A
45 32 mulid2d A B A < B T 0 1 1 A = A
46 45 oveq1d A B A < B T 0 1 1 A T A = A T A
47 44 46 eqtrd A B A < B T 0 1 1 T A = A T A
48 47 oveq2d A B A < B T 0 1 T B + 1 T A = T B + A - T A
49 42 48 eqtrd A B A < B T 0 1 1 T A + T B = T B + A - T A
50 34 36 49 3eqtr4d A B A < B T 0 1 T B A + A = 1 T A + T B
51 32 addid2d A B A < B T 0 1 0 + A = A
52 30 32 npcand A B A < B T 0 1 B - A + A = B
53 51 52 oveq12d A B A < B T 0 1 0 + A B - A + A = A B
54 28 50 53 3eltr3d A B A < B T 0 1 1 T A + T B A B