Metamath Proof Explorer


Theorem lindsind2

Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lindfind2.k K = LSpan W
lindfind2.l L = Scalar W
Assertion lindsind2 W LMod L NzRing F LIndS W E F ¬ E K F E

Proof

Step Hyp Ref Expression
1 lindfind2.k K = LSpan W
2 lindfind2.l L = Scalar W
3 simp1 W LMod L NzRing F LIndS W E F W LMod L NzRing
4 linds2 F LIndS W I F LIndF W
5 4 3ad2ant2 W LMod L NzRing F LIndS W E F I F LIndF W
6 dmresi dom I F = F
7 6 eleq2i E dom I F E F
8 7 biimpri E F E dom I F
9 8 3ad2ant3 W LMod L NzRing F LIndS W E F E dom I F
10 1 2 lindfind2 W LMod L NzRing I F LIndF W E dom I F ¬ I F E K I F dom I F E
11 3 5 9 10 syl3anc W LMod L NzRing F LIndS W E F ¬ I F E K I F dom I F E
12 fvresi E F I F E = E
13 6 difeq1i dom I F E = F E
14 13 imaeq2i I F dom I F E = I F F E
15 difss F E F
16 resiima F E F I F F E = F E
17 15 16 ax-mp I F F E = F E
18 14 17 eqtri I F dom I F E = F E
19 18 fveq2i K I F dom I F E = K F E
20 19 a1i E F K I F dom I F E = K F E
21 12 20 eleq12d E F I F E K I F dom I F E E K F E
22 21 3ad2ant3 W LMod L NzRing F LIndS W E F I F E K I F dom I F E E K F E
23 11 22 mtbid W LMod L NzRing F LIndS W E F ¬ E K F E