| Step |
Hyp |
Ref |
Expression |
| 1 |
|
linepsub.n |
|
| 2 |
|
linepsub.s |
|
| 3 |
|
ssrab2 |
|
| 4 |
|
sseq1 |
|
| 5 |
3 4
|
mpbiri |
|
| 6 |
5
|
a1i |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
7 8
|
atbase |
|
| 10 |
7 8
|
atbase |
|
| 11 |
9 10
|
anim12i |
|
| 12 |
|
eqid |
|
| 13 |
7 12
|
latjcl |
|
| 14 |
13
|
3expb |
|
| 15 |
11 14
|
sylan2 |
|
| 16 |
|
eleq2 |
|
| 17 |
|
breq1 |
|
| 18 |
17
|
elrab |
|
| 19 |
7 8
|
atbase |
|
| 20 |
19
|
anim1i |
|
| 21 |
18 20
|
sylbi |
|
| 22 |
16 21
|
biimtrdi |
|
| 23 |
|
eleq2 |
|
| 24 |
|
breq1 |
|
| 25 |
24
|
elrab |
|
| 26 |
7 8
|
atbase |
|
| 27 |
26
|
anim1i |
|
| 28 |
25 27
|
sylbi |
|
| 29 |
23 28
|
biimtrdi |
|
| 30 |
22 29
|
anim12d |
|
| 31 |
|
an4 |
|
| 32 |
30 31
|
imbitrdi |
|
| 33 |
32
|
imp |
|
| 34 |
33
|
anim2i |
|
| 35 |
34
|
anassrs |
|
| 36 |
7 8
|
atbase |
|
| 37 |
|
eqid |
|
| 38 |
7 37 12
|
latjle12 |
|
| 39 |
38
|
biimpd |
|
| 40 |
39
|
3exp2 |
|
| 41 |
40
|
impd |
|
| 42 |
41
|
com23 |
|
| 43 |
42
|
imp43 |
|
| 44 |
43
|
adantr |
|
| 45 |
7 12
|
latjcl |
|
| 46 |
45
|
3expib |
|
| 47 |
7 37
|
lattr |
|
| 48 |
47
|
3exp2 |
|
| 49 |
48
|
com24 |
|
| 50 |
46 49
|
syl5d |
|
| 51 |
50
|
imp41 |
|
| 52 |
51
|
adantlrr |
|
| 53 |
44 52
|
mpan2d |
|
| 54 |
35 36 53
|
syl2an |
|
| 55 |
|
simpr |
|
| 56 |
54 55
|
jctild |
|
| 57 |
|
eleq2 |
|
| 58 |
|
breq1 |
|
| 59 |
58
|
elrab |
|
| 60 |
57 59
|
bitrdi |
|
| 61 |
60
|
ad3antlr |
|
| 62 |
56 61
|
sylibrd |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
63
|
ralrimivva |
|
| 65 |
64
|
ex |
|
| 66 |
15 65
|
syldan |
|
| 67 |
6 66
|
jcad |
|
| 68 |
67
|
adantld |
|
| 69 |
68
|
rexlimdvva |
|
| 70 |
37 12 8 1
|
isline |
|
| 71 |
37 12 8 2
|
ispsubsp |
|
| 72 |
69 70 71
|
3imtr4d |
|
| 73 |
72
|
imp |
|