Metamath Proof Explorer


Theorem linepsubclN

Description: A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses linepsubcl.n N = Lines K
linepsubcl.c C = PSubCl K
Assertion linepsubclN K HL X N X C

Proof

Step Hyp Ref Expression
1 linepsubcl.n N = Lines K
2 linepsubcl.c C = PSubCl K
3 hllat K HL K Lat
4 eqid join K = join K
5 eqid Atoms K = Atoms K
6 eqid pmap K = pmap K
7 4 5 1 6 isline2 K Lat X N p Atoms K q Atoms K p q X = pmap K p join K q
8 3 7 syl K HL X N p Atoms K q Atoms K p q X = pmap K p join K q
9 3 adantr K HL p Atoms K q Atoms K K Lat
10 eqid Base K = Base K
11 10 5 atbase p Atoms K p Base K
12 11 ad2antrl K HL p Atoms K q Atoms K p Base K
13 10 5 atbase q Atoms K q Base K
14 13 ad2antll K HL p Atoms K q Atoms K q Base K
15 10 4 latjcl K Lat p Base K q Base K p join K q Base K
16 9 12 14 15 syl3anc K HL p Atoms K q Atoms K p join K q Base K
17 10 6 2 pmapsubclN K HL p join K q Base K pmap K p join K q C
18 16 17 syldan K HL p Atoms K q Atoms K pmap K p join K q C
19 eleq1a pmap K p join K q C X = pmap K p join K q X C
20 18 19 syl K HL p Atoms K q Atoms K X = pmap K p join K q X C
21 20 adantld K HL p Atoms K q Atoms K p q X = pmap K p join K q X C
22 21 rexlimdvva K HL p Atoms K q Atoms K p q X = pmap K p join K q X C
23 8 22 sylbid K HL X N X C
24 23 imp K HL X N X C