Metamath Proof Explorer


Theorem lineq

Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses lineq.a φ A
lineq.b φ B
lineq.x φ X
lineq.y φ Y
lineq.n0 φ A 0
Assertion lineq φ A X + B = Y X = Y B A

Proof

Step Hyp Ref Expression
1 lineq.a φ A
2 lineq.b φ B
3 lineq.x φ X
4 lineq.y φ Y
5 lineq.n0 φ A 0
6 1 3 mulcld φ A X
7 6 2 4 addlsub φ A X + B = Y A X = Y B
8 4 2 subcld φ Y B
9 1 3 8 5 rdiv φ A X = Y B X = Y B A
10 7 9 bitrd φ A X + B = Y X = Y B A