Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
lineq
Next ⟩
Ordering on reals (cont.)
Metamath Proof Explorer
Ascii
Unicode
Theorem
lineq
Description:
Solution of a (scalar) linear equation.
(Contributed by
BJ
, 6-Jun-2019)
Ref
Expression
Hypotheses
lineq.a
⊢
φ
→
A
∈
ℂ
lineq.b
⊢
φ
→
B
∈
ℂ
lineq.x
⊢
φ
→
X
∈
ℂ
lineq.y
⊢
φ
→
Y
∈
ℂ
lineq.n0
⊢
φ
→
A
≠
0
Assertion
lineq
⊢
φ
→
A
⁢
X
+
B
=
Y
↔
X
=
Y
−
B
A
Proof
Step
Hyp
Ref
Expression
1
lineq.a
⊢
φ
→
A
∈
ℂ
2
lineq.b
⊢
φ
→
B
∈
ℂ
3
lineq.x
⊢
φ
→
X
∈
ℂ
4
lineq.y
⊢
φ
→
Y
∈
ℂ
5
lineq.n0
⊢
φ
→
A
≠
0
6
1
3
mulcld
⊢
φ
→
A
⁢
X
∈
ℂ
7
6
2
4
addlsub
⊢
φ
→
A
⁢
X
+
B
=
Y
↔
A
⁢
X
=
Y
−
B
8
4
2
subcld
⊢
φ
→
Y
−
B
∈
ℂ
9
1
3
8
5
rdiv
⊢
φ
→
A
⁢
X
=
Y
−
B
↔
X
=
Y
−
B
A
10
7
9
bitrd
⊢
φ
→
A
⁢
X
+
B
=
Y
↔
X
=
Y
−
B
A