Metamath Proof Explorer


Theorem lkrin

Description: Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lkrin.f F = LFnl W
lkrin.k K = LKer W
lkrin.d D = LDual W
lkrin.p + ˙ = + D
lkrin.w φ W LMod
lkrin.e φ G F
lkrin.g φ H F
Assertion lkrin φ K G K H K G + ˙ H

Proof

Step Hyp Ref Expression
1 lkrin.f F = LFnl W
2 lkrin.k K = LKer W
3 lkrin.d D = LDual W
4 lkrin.p + ˙ = + D
5 lkrin.w φ W LMod
6 lkrin.e φ G F
7 lkrin.g φ H F
8 elin v K G K H v K G v K H
9 5 adantr φ v K G v K H W LMod
10 6 adantr φ v K G v K H G F
11 simprl φ v K G v K H v K G
12 eqid Base W = Base W
13 12 1 2 lkrcl W LMod G F v K G v Base W
14 9 10 11 13 syl3anc φ v K G v K H v Base W
15 eqid Scalar W = Scalar W
16 eqid + Scalar W = + Scalar W
17 7 adantr φ v K G v K H H F
18 12 15 16 1 3 4 9 10 17 14 ldualvaddval φ v K G v K H G + ˙ H v = G v + Scalar W H v
19 eqid 0 Scalar W = 0 Scalar W
20 15 19 1 2 lkrf0 W LMod G F v K G G v = 0 Scalar W
21 9 10 11 20 syl3anc φ v K G v K H G v = 0 Scalar W
22 simprr φ v K G v K H v K H
23 15 19 1 2 lkrf0 W LMod H F v K H H v = 0 Scalar W
24 9 17 22 23 syl3anc φ v K G v K H H v = 0 Scalar W
25 21 24 oveq12d φ v K G v K H G v + Scalar W H v = 0 Scalar W + Scalar W 0 Scalar W
26 15 lmodring W LMod Scalar W Ring
27 5 26 syl φ Scalar W Ring
28 ringgrp Scalar W Ring Scalar W Grp
29 27 28 syl φ Scalar W Grp
30 eqid Base Scalar W = Base Scalar W
31 30 19 grpidcl Scalar W Grp 0 Scalar W Base Scalar W
32 30 16 19 grplid Scalar W Grp 0 Scalar W Base Scalar W 0 Scalar W + Scalar W 0 Scalar W = 0 Scalar W
33 29 31 32 syl2anc2 φ 0 Scalar W + Scalar W 0 Scalar W = 0 Scalar W
34 33 adantr φ v K G v K H 0 Scalar W + Scalar W 0 Scalar W = 0 Scalar W
35 18 25 34 3eqtrd φ v K G v K H G + ˙ H v = 0 Scalar W
36 1 3 4 5 6 7 ldualvaddcl φ G + ˙ H F
37 36 adantr φ v K G v K H G + ˙ H F
38 12 15 19 1 2 ellkr W LMod G + ˙ H F v K G + ˙ H v Base W G + ˙ H v = 0 Scalar W
39 9 37 38 syl2anc φ v K G v K H v K G + ˙ H v Base W G + ˙ H v = 0 Scalar W
40 14 35 39 mpbir2and φ v K G v K H v K G + ˙ H
41 40 ex φ v K G v K H v K G + ˙ H
42 8 41 syl5bi φ v K G K H v K G + ˙ H
43 42 ssrdv φ K G K H K G + ˙ H