Metamath Proof Explorer


Theorem llnbase

Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnbase.b B = Base K
llnbase.n N = LLines K
Assertion llnbase X N X B

Proof

Step Hyp Ref Expression
1 llnbase.b B = Base K
2 llnbase.n N = LLines K
3 n0i X N ¬ N =
4 2 eqeq1i N = LLines K =
5 3 4 sylnib X N ¬ LLines K =
6 fvprc ¬ K V LLines K =
7 5 6 nsyl2 X N K V
8 eqid K = K
9 eqid Atoms K = Atoms K
10 1 8 9 2 islln K V X N X B p Atoms K p K X
11 10 simprbda K V X N X B
12 7 11 mpancom X N X B