Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
llnbase
Next ⟩
islln3
Metamath Proof Explorer
Ascii
Unicode
Theorem
llnbase
Description:
A lattice line is a lattice element.
(Contributed by
NM
, 16-Jun-2012)
Ref
Expression
Hypotheses
llnbase.b
⊢
B
=
Base
K
llnbase.n
⊢
N
=
LLines
⁡
K
Assertion
llnbase
⊢
X
∈
N
→
X
∈
B
Proof
Step
Hyp
Ref
Expression
1
llnbase.b
⊢
B
=
Base
K
2
llnbase.n
⊢
N
=
LLines
⁡
K
3
n0i
⊢
X
∈
N
→
¬
N
=
∅
4
2
eqeq1i
⊢
N
=
∅
↔
LLines
⁡
K
=
∅
5
3
4
sylnib
⊢
X
∈
N
→
¬
LLines
⁡
K
=
∅
6
fvprc
⊢
¬
K
∈
V
→
LLines
⁡
K
=
∅
7
5
6
nsyl2
⊢
X
∈
N
→
K
∈
V
8
eqid
⊢
⋖
K
=
⋖
K
9
eqid
⊢
Atoms
⁡
K
=
Atoms
⁡
K
10
1
8
9
2
islln
⊢
K
∈
V
→
X
∈
N
↔
X
∈
B
∧
∃
p
∈
Atoms
⁡
K
p
⋖
K
X
11
10
simprbda
⊢
K
∈
V
∧
X
∈
N
→
X
∈
B
12
7
11
mpancom
⊢
X
∈
N
→
X
∈
B