| Step |
Hyp |
Ref |
Expression |
| 1 |
|
llncvrlpln2.l |
|
| 2 |
|
llncvrlpln2.c |
|
| 3 |
|
llncvrlpln2.n |
|
| 4 |
|
llncvrlpln2.p |
|
| 5 |
|
simpr |
|
| 6 |
|
simpl1 |
|
| 7 |
|
simpl3 |
|
| 8 |
3 4
|
lplnnelln |
|
| 9 |
6 7 8
|
syl2anc |
|
| 10 |
|
simpl2 |
|
| 11 |
|
eleq1 |
|
| 12 |
10 11
|
syl5ibcom |
|
| 13 |
12
|
necon3bd |
|
| 14 |
9 13
|
mpd |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
pltval |
|
| 17 |
16
|
adantr |
|
| 18 |
5 14 17
|
mpbir2and |
|
| 19 |
|
simpl1 |
|
| 20 |
|
simpl2 |
|
| 21 |
|
eqid |
|
| 22 |
21 3
|
llnbase |
|
| 23 |
20 22
|
syl |
|
| 24 |
|
simpl3 |
|
| 25 |
21 4
|
lplnbase |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
simpr |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
21 1 15 28 2 29
|
hlrelat3 |
|
| 31 |
19 23 26 27 30
|
syl31anc |
|
| 32 |
21 1 28 29 4
|
islpln2 |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simp3 |
|
| 35 |
21 28 29 3
|
islln2 |
|
| 36 |
|
simp3l |
|
| 37 |
|
simp3r |
|
| 38 |
|
simp12r |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
simp22 |
|
| 41 |
37 39 40
|
3brtr3d |
|
| 42 |
|
simp111 |
|
| 43 |
|
simp112 |
|
| 44 |
|
simp113 |
|
| 45 |
|
simp23 |
|
| 46 |
43 44 45
|
3jca |
|
| 47 |
|
simp13l |
|
| 48 |
|
simp13r |
|
| 49 |
|
simp21 |
|
| 50 |
47 48 49
|
3jca |
|
| 51 |
36 38 39
|
3brtr3d |
|
| 52 |
21 28 29
|
hlatjcl |
|
| 53 |
42 43 44 52
|
syl3anc |
|
| 54 |
21 1 28 2 29
|
cvr1 |
|
| 55 |
42 53 45 54
|
syl3anc |
|
| 56 |
51 55
|
mpbird |
|
| 57 |
|
simp12l |
|
| 58 |
1 28 29
|
3at |
|
| 59 |
42 46 50 56 57 58
|
syl32anc |
|
| 60 |
41 59
|
mpbid |
|
| 61 |
60 39 40
|
3eqtr4d |
|
| 62 |
36 61
|
breqtrd |
|
| 63 |
62
|
3exp |
|
| 64 |
63
|
3expd |
|
| 65 |
64
|
3exp |
|
| 66 |
65
|
3expib |
|
| 67 |
66
|
rexlimdvv |
|
| 68 |
67
|
adantld |
|
| 69 |
35 68
|
sylbid |
|
| 70 |
69
|
imp31 |
|
| 71 |
34 70
|
syl7 |
|
| 72 |
71
|
rexlimdv |
|
| 73 |
72
|
rexlimdvva |
|
| 74 |
73
|
adantld |
|
| 75 |
33 74
|
sylbid |
|
| 76 |
75
|
3impia |
|
| 77 |
76
|
rexlimdv |
|
| 78 |
77
|
imp |
|
| 79 |
31 78
|
syldan |
|
| 80 |
18 79
|
syldan |
|