Step |
Hyp |
Ref |
Expression |
1 |
|
llnexch.l |
|
2 |
|
llnexch.j |
|
3 |
|
llnexch.m |
|
4 |
|
llnexch.a |
|
5 |
|
llnexch.n |
|
6 |
|
simpl11 |
|
7 |
|
simpl21 |
|
8 |
|
simpl12 |
|
9 |
|
eqid |
|
10 |
9 5
|
llnbase |
|
11 |
8 10
|
syl |
|
12 |
6
|
hllatd |
|
13 |
|
simpl13 |
|
14 |
9 5
|
llnbase |
|
15 |
13 14
|
syl |
|
16 |
9 3
|
latmcl |
|
17 |
12 11 15 16
|
syl3anc |
|
18 |
9 1 3
|
latmle1 |
|
19 |
12 11 15 18
|
syl3anc |
|
20 |
9 1 2 3 4
|
atmod2i2 |
|
21 |
6 7 11 17 19 20
|
syl131anc |
|
22 |
9 4
|
atbase |
|
23 |
7 22
|
syl |
|
24 |
9 3
|
latmcom |
|
25 |
12 11 23 24
|
syl3anc |
|
26 |
|
simpl23 |
|
27 |
|
hlatl |
|
28 |
6 27
|
syl |
|
29 |
|
eqid |
|
30 |
9 1 3 29 4
|
atnle |
|
31 |
28 7 11 30
|
syl3anc |
|
32 |
26 31
|
mpbid |
|
33 |
25 32
|
eqtrd |
|
34 |
33
|
oveq1d |
|
35 |
|
simpr |
|
36 |
|
hlcvl |
|
37 |
6 36
|
syl |
|
38 |
|
simpl3 |
|
39 |
|
simpl22 |
|
40 |
|
breq1 |
|
41 |
19 40
|
syl5ibrcom |
|
42 |
41
|
necon3bd |
|
43 |
26 42
|
mpd |
|
44 |
43
|
necomd |
|
45 |
1 2 4
|
cvlatexchb1 |
|
46 |
37 38 39 7 44 45
|
syl131anc |
|
47 |
35 46
|
mpbid |
|
48 |
47
|
oveq2d |
|
49 |
21 34 48
|
3eqtr3rd |
|
50 |
|
hlol |
|
51 |
6 50
|
syl |
|
52 |
9 2 29
|
olj02 |
|
53 |
51 17 52
|
syl2anc |
|
54 |
49 53
|
eqtr2d |
|
55 |
54
|
ex |
|
56 |
|
simp11 |
|
57 |
56
|
hllatd |
|
58 |
|
simp12 |
|
59 |
58 10
|
syl |
|
60 |
|
simp21 |
|
61 |
|
simp22 |
|
62 |
9 2 4
|
hlatjcl |
|
63 |
56 60 61 62
|
syl3anc |
|
64 |
9 1 3
|
latmle2 |
|
65 |
57 59 63 64
|
syl3anc |
|
66 |
|
breq1 |
|
67 |
65 66
|
syl5ibrcom |
|
68 |
55 67
|
impbid |
|