Metamath Proof Explorer


Theorem llni

Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses llnset.b B = Base K
llnset.c C = K
llnset.a A = Atoms K
llnset.n N = LLines K
Assertion llni K D X B P A P C X X N

Proof

Step Hyp Ref Expression
1 llnset.b B = Base K
2 llnset.c C = K
3 llnset.a A = Atoms K
4 llnset.n N = LLines K
5 simpl2 K D X B P A P C X X B
6 breq1 p = P p C X P C X
7 6 rspcev P A P C X p A p C X
8 7 3ad2antl3 K D X B P A P C X p A p C X
9 simpl1 K D X B P A P C X K D
10 1 2 3 4 islln K D X N X B p A p C X
11 9 10 syl K D X B P A P C X X N X B p A p C X
12 5 8 11 mpbir2and K D X B P A P C X X N