Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
llni
Next ⟩
llnbase
Metamath Proof Explorer
Ascii
Unicode
Theorem
llni
Description:
Condition implying a lattice line.
(Contributed by
NM
, 17-Jun-2012)
Ref
Expression
Hypotheses
llnset.b
⊢
B
=
Base
K
llnset.c
⊢
C
=
⋖
K
llnset.a
⊢
A
=
Atoms
⁡
K
llnset.n
⊢
N
=
LLines
⁡
K
Assertion
llni
⊢
K
∈
D
∧
X
∈
B
∧
P
∈
A
∧
P
C
X
→
X
∈
N
Proof
Step
Hyp
Ref
Expression
1
llnset.b
⊢
B
=
Base
K
2
llnset.c
⊢
C
=
⋖
K
3
llnset.a
⊢
A
=
Atoms
⁡
K
4
llnset.n
⊢
N
=
LLines
⁡
K
5
simpl2
⊢
K
∈
D
∧
X
∈
B
∧
P
∈
A
∧
P
C
X
→
X
∈
B
6
breq1
⊢
p
=
P
→
p
C
X
↔
P
C
X
7
6
rspcev
⊢
P
∈
A
∧
P
C
X
→
∃
p
∈
A
p
C
X
8
7
3ad2antl3
⊢
K
∈
D
∧
X
∈
B
∧
P
∈
A
∧
P
C
X
→
∃
p
∈
A
p
C
X
9
simpl1
⊢
K
∈
D
∧
X
∈
B
∧
P
∈
A
∧
P
C
X
→
K
∈
D
10
1
2
3
4
islln
⊢
K
∈
D
→
X
∈
N
↔
X
∈
B
∧
∃
p
∈
A
p
C
X
11
9
10
syl
⊢
K
∈
D
∧
X
∈
B
∧
P
∈
A
∧
P
C
X
→
X
∈
N
↔
X
∈
B
∧
∃
p
∈
A
p
C
X
12
5
8
11
mpbir2and
⊢
K
∈
D
∧
X
∈
B
∧
P
∈
A
∧
P
C
X
→
X
∈
N