Metamath Proof Explorer


Theorem llnmod1i2

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B = Base K
atmod.l ˙ = K
atmod.j ˙ = join K
atmod.m ˙ = meet K
atmod.a A = Atoms K
Assertion llnmod1i2 K HL X B Y B P A Q A X ˙ Y X ˙ P ˙ Q ˙ Y = X ˙ P ˙ Q ˙ Y

Proof

Step Hyp Ref Expression
1 atmod.b B = Base K
2 atmod.l ˙ = K
3 atmod.j ˙ = join K
4 atmod.m ˙ = meet K
5 atmod.a A = Atoms K
6 simpl1 K HL X B Y B P A Q A K HL
7 simpl2 K HL X B Y B P A Q A X B
8 simprl K HL X B Y B P A Q A P A
9 simprr K HL X B Y B P A Q A Q A
10 eqid pmap K = pmap K
11 eqid + 𝑃 K = + 𝑃 K
12 1 3 5 10 11 pmapjlln1 K HL X B P A Q A pmap K X ˙ P ˙ Q = pmap K X + 𝑃 K pmap K P ˙ Q
13 6 7 8 9 12 syl13anc K HL X B Y B P A Q A pmap K X ˙ P ˙ Q = pmap K X + 𝑃 K pmap K P ˙ Q
14 6 hllatd K HL X B Y B P A Q A K Lat
15 1 5 atbase P A P B
16 8 15 syl K HL X B Y B P A Q A P B
17 1 5 atbase Q A Q B
18 9 17 syl K HL X B Y B P A Q A Q B
19 1 3 latjcl K Lat P B Q B P ˙ Q B
20 14 16 18 19 syl3anc K HL X B Y B P A Q A P ˙ Q B
21 simpl3 K HL X B Y B P A Q A Y B
22 1 2 3 4 10 11 hlmod1i K HL X B P ˙ Q B Y B X ˙ Y pmap K X ˙ P ˙ Q = pmap K X + 𝑃 K pmap K P ˙ Q X ˙ P ˙ Q ˙ Y = X ˙ P ˙ Q ˙ Y
23 6 7 20 21 22 syl13anc K HL X B Y B P A Q A X ˙ Y pmap K X ˙ P ˙ Q = pmap K X + 𝑃 K pmap K P ˙ Q X ˙ P ˙ Q ˙ Y = X ˙ P ˙ Q ˙ Y
24 13 23 mpan2d K HL X B Y B P A Q A X ˙ Y X ˙ P ˙ Q ˙ Y = X ˙ P ˙ Q ˙ Y
25 24 3impia K HL X B Y B P A Q A X ˙ Y X ˙ P ˙ Q ˙ Y = X ˙ P ˙ Q ˙ Y
26 25 eqcomd K HL X B Y B P A Q A X ˙ Y X ˙ P ˙ Q ˙ Y = X ˙ P ˙ Q ˙ Y