Metamath Proof Explorer


Theorem llnneat

Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012)

Ref Expression
Hypotheses llnneat.a A = Atoms K
llnneat.n N = LLines K
Assertion llnneat K HL X N ¬ X A

Proof

Step Hyp Ref Expression
1 llnneat.a A = Atoms K
2 llnneat.n N = LLines K
3 hllat K HL K Lat
4 eqid Base K = Base K
5 4 2 llnbase X N X Base K
6 eqid K = K
7 4 6 latref K Lat X Base K X K X
8 3 5 7 syl2an K HL X N X K X
9 6 1 2 llnnleat K HL X N X A ¬ X K X
10 9 3expia K HL X N X A ¬ X K X
11 8 10 mt2d K HL X N ¬ X A