Metamath Proof Explorer


Theorem llnnleat

Description: An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012)

Ref Expression
Hypotheses llnnleat.l ˙ = K
llnnleat.a A = Atoms K
llnnleat.n N = LLines K
Assertion llnnleat K HL X N P A ¬ X ˙ P

Proof

Step Hyp Ref Expression
1 llnnleat.l ˙ = K
2 llnnleat.a A = Atoms K
3 llnnleat.n N = LLines K
4 simp2 K HL X N P A X N
5 eqid Base K = Base K
6 eqid K = K
7 5 6 2 3 islln K HL X N X Base K q A q K X
8 7 3ad2ant1 K HL X N P A X N X Base K q A q K X
9 4 8 mpbid K HL X N P A X Base K q A q K X
10 9 simprd K HL X N P A q A q K X
11 simp11 K HL X N P A q A q K X K HL
12 hlatl K HL K AtLat
13 11 12 syl K HL X N P A q A q K X K AtLat
14 simp2 K HL X N P A q A q K X q A
15 simp13 K HL X N P A q A q K X P A
16 eqid < K = < K
17 16 2 atnlt K AtLat q A P A ¬ q < K P
18 13 14 15 17 syl3anc K HL X N P A q A q K X ¬ q < K P
19 5 2 atbase q A q Base K
20 19 3ad2ant2 K HL X N P A q A q K X q Base K
21 simp12 K HL X N P A q A q K X X N
22 5 3 llnbase X N X Base K
23 21 22 syl K HL X N P A q A q K X X Base K
24 simp3 K HL X N P A q A q K X q K X
25 5 16 6 cvrlt K HL q Base K X Base K q K X q < K X
26 11 20 23 24 25 syl31anc K HL X N P A q A q K X q < K X
27 hlpos K HL K Poset
28 11 27 syl K HL X N P A q A q K X K Poset
29 5 2 atbase P A P Base K
30 15 29 syl K HL X N P A q A q K X P Base K
31 5 1 16 pltletr K Poset q Base K X Base K P Base K q < K X X ˙ P q < K P
32 28 20 23 30 31 syl13anc K HL X N P A q A q K X q < K X X ˙ P q < K P
33 26 32 mpand K HL X N P A q A q K X X ˙ P q < K P
34 18 33 mtod K HL X N P A q A q K X ¬ X ˙ P
35 34 rexlimdv3a K HL X N P A q A q K X ¬ X ˙ P
36 10 35 mpd K HL X N P A ¬ X ˙ P