Metamath Proof Explorer


Theorem lltropt

Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024) (Revised by Scott Fenton, 21-Feb-2025)

Ref Expression
Assertion lltropt L A s R A

Proof

Step Hyp Ref Expression
1 ssltleft A No L A s A
2 ssltright A No A s R A
3 snnzg A No A
4 sslttr L A s A A s R A A L A s R A
5 1 2 3 4 syl3anc A No L A s R A
6 0elpw 𝒫 No
7 nulssgt 𝒫 No s
8 6 7 mp1i ¬ A No s
9 leftf L : No 𝒫 No
10 9 fdmi dom L = No
11 10 eleq2i A dom L A No
12 ndmfv ¬ A dom L L A =
13 11 12 sylnbir ¬ A No L A =
14 rightf R : No 𝒫 No
15 14 fdmi dom R = No
16 15 eleq2i A dom R A No
17 ndmfv ¬ A dom R R A =
18 16 17 sylnbir ¬ A No R A =
19 8 13 18 3brtr4d ¬ A No L A s R A
20 5 19 pm2.61i L A s R A