Metamath Proof Explorer


Theorem lly1stc

Description: First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion lly1stc Locally 1 st 𝜔 = 1 st 𝜔

Proof

Step Hyp Ref Expression
1 llytop j Locally 1 st 𝜔 j Top
2 simprr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 j 𝑡 u 1 st 𝜔
3 simprl j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 x u
4 1 ad3antrrr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 j Top
5 elssuni u j u j
6 5 ad2antlr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 u j
7 eqid j = j
8 7 restuni j Top u j u = j 𝑡 u
9 4 6 8 syl2anc j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 u = j 𝑡 u
10 3 9 eleqtrd j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 x j 𝑡 u
11 eqid j 𝑡 u = j 𝑡 u
12 11 1stcclb j 𝑡 u 1 st 𝜔 x j 𝑡 u t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v
13 2 10 12 syl2anc j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v
14 elpwi t 𝒫 j 𝑡 u t j 𝑡 u
15 14 adantl j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t j 𝑡 u
16 15 sselda j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n j 𝑡 u
17 4 adantr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u j Top
18 simpllr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u u j
19 restopn2 j Top u j n j 𝑡 u n j n u
20 17 18 19 syl2anc j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n j 𝑡 u n j n u
21 20 simplbda j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n j 𝑡 u n u
22 16 21 syldan j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n u
23 df-ss n u n u = n
24 22 23 sylib j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n u = n
25 20 simprbda j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n j 𝑡 u n j
26 16 25 syldan j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n j
27 24 26 eqeltrd j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n u j
28 ineq1 a = n a u = n u
29 28 cbvmptv a t a u = n t n u
30 27 29 fmptd j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u a t a u : t j
31 30 frnd j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u ran a t a u j
32 31 adantrr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v ran a t a u j
33 vex j V
34 33 elpw2 ran a t a u 𝒫 j ran a t a u j
35 32 34 sylibr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v ran a t a u 𝒫 j
36 simprrl j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v t ω
37 1stcrestlem t ω ran a t a u ω
38 36 37 syl j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v ran a t a u ω
39 simprr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z x z
40 3 ad2antrr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z x u
41 39 40 elind j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z x z u
42 eleq2 v = z u x v x z u
43 sseq2 v = z u n v n z u
44 43 anbi2d v = z u x n n v x n n z u
45 44 rexbidv v = z u n t x n n v n t x n n z u
46 42 45 imbi12d v = z u x v n t x n n v x z u n t x n n z u
47 simprrr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v v j 𝑡 u x v n t x n n v
48 47 adantr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z v j 𝑡 u x v n t x n n v
49 4 ad2antrr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z j Top
50 simpllr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v u j
51 50 adantr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z u j
52 simprl j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z z j
53 elrestr j Top u j z j z u j 𝑡 u
54 49 51 52 53 syl3anc j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z z u j 𝑡 u
55 46 48 54 rspcdva j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z x z u n t x n n z u
56 41 55 mpd j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z n t x n n z u
57 3 ad2antrr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t x u
58 elin x n u x n x u
59 58 simplbi2com x u x n x n u
60 57 59 syl j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t x n x n u
61 22 biantrud j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n z n z n u
62 ssin n z n u n z u
63 61 62 bitrdi j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n z n z u
64 ssinss1 n z n u z
65 63 64 syl6bir j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t n z u n u z
66 60 65 anim12d j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t x n n z u x n u n u z
67 66 reximdva j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t x n n z u n t x n u n u z
68 vex n V
69 68 inex1 n u V
70 69 rgenw n t n u V
71 eleq2 w = n u x w x n u
72 sseq1 w = n u w z n u z
73 71 72 anbi12d w = n u x w w z x n u n u z
74 29 73 rexrnmptw n t n u V w ran a t a u x w w z n t x n u n u z
75 70 74 ax-mp w ran a t a u x w w z n t x n u n u z
76 67 75 syl6ibr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u n t x n n z u w ran a t a u x w w z
77 76 adantrr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v n t x n n z u w ran a t a u x w w z
78 77 adantr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z n t x n n z u w ran a t a u x w w z
79 56 78 mpd j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z w ran a t a u x w w z
80 79 expr j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z w ran a t a u x w w z
81 80 ralrimiva j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v z j x z w ran a t a u x w w z
82 breq1 y = ran a t a u y ω ran a t a u ω
83 rexeq y = ran a t a u w y x w w z w ran a t a u x w w z
84 83 imbi2d y = ran a t a u x z w y x w w z x z w ran a t a u x w w z
85 84 ralbidv y = ran a t a u z j x z w y x w w z z j x z w ran a t a u x w w z
86 82 85 anbi12d y = ran a t a u y ω z j x z w y x w w z ran a t a u ω z j x z w ran a t a u x w w z
87 86 rspcev ran a t a u 𝒫 j ran a t a u ω z j x z w ran a t a u x w w z y 𝒫 j y ω z j x z w y x w w z
88 35 38 81 87 syl12anc j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 t 𝒫 j 𝑡 u t ω v j 𝑡 u x v n t x n n v y 𝒫 j y ω z j x z w y x w w z
89 13 88 rexlimddv j Locally 1 st 𝜔 x j u j x u j 𝑡 u 1 st 𝜔 y 𝒫 j y ω z j x z w y x w w z
90 89 3adantr1 j Locally 1 st 𝜔 x j u j u j x u j 𝑡 u 1 st 𝜔 y 𝒫 j y ω z j x z w y x w w z
91 simpl j Locally 1 st 𝜔 x j j Locally 1 st 𝜔
92 1 adantr j Locally 1 st 𝜔 x j j Top
93 7 topopn j Top j j
94 92 93 syl j Locally 1 st 𝜔 x j j j
95 simpr j Locally 1 st 𝜔 x j x j
96 llyi j Locally 1 st 𝜔 j j x j u j u j x u j 𝑡 u 1 st 𝜔
97 91 94 95 96 syl3anc j Locally 1 st 𝜔 x j u j u j x u j 𝑡 u 1 st 𝜔
98 90 97 r19.29a j Locally 1 st 𝜔 x j y 𝒫 j y ω z j x z w y x w w z
99 98 ralrimiva j Locally 1 st 𝜔 x j y 𝒫 j y ω z j x z w y x w w z
100 7 is1stc2 j 1 st 𝜔 j Top x j y 𝒫 j y ω z j x z w y x w w z
101 1 99 100 sylanbrc j Locally 1 st 𝜔 j 1 st 𝜔
102 101 ssriv Locally 1 st 𝜔 1 st 𝜔
103 1stcrest j 1 st 𝜔 x j j 𝑡 x 1 st 𝜔
104 103 adantl j 1 st 𝜔 x j j 𝑡 x 1 st 𝜔
105 1stctop j 1 st 𝜔 j Top
106 105 ssriv 1 st 𝜔 Top
107 106 a1i 1 st 𝜔 Top
108 104 107 restlly 1 st 𝜔 Locally 1 st 𝜔
109 108 mptru 1 st 𝜔 Locally 1 st 𝜔
110 102 109 eqssi Locally 1 st 𝜔 = 1 st 𝜔