Metamath Proof Explorer


Theorem llycmpkgen

Description: A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion llycmpkgen J N-Locally Comp J ran 𝑘Gen

Proof

Step Hyp Ref Expression
1 eqid J = J
2 nllytop J N-Locally Comp J Top
3 simpl J N-Locally Comp x J J N-Locally Comp
4 1 topopn J Top J J
5 2 4 syl J N-Locally Comp J J
6 5 adantr J N-Locally Comp x J J J
7 simpr J N-Locally Comp x J x J
8 nllyi J N-Locally Comp J J x J k nei J x k J J 𝑡 k Comp
9 3 6 7 8 syl3anc J N-Locally Comp x J k nei J x k J J 𝑡 k Comp
10 simpr k J J 𝑡 k Comp J 𝑡 k Comp
11 10 reximi k nei J x k J J 𝑡 k Comp k nei J x J 𝑡 k Comp
12 9 11 syl J N-Locally Comp x J k nei J x J 𝑡 k Comp
13 1 2 12 llycmpkgen2 J N-Locally Comp J ran 𝑘Gen