Metamath Proof Explorer


Theorem llyeq

Description: Equality theorem for the Locally A predicate. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyeq A = B Locally A = Locally B

Proof

Step Hyp Ref Expression
1 eleq2 A = B j 𝑡 u A j 𝑡 u B
2 1 anbi2d A = B y u j 𝑡 u A y u j 𝑡 u B
3 2 rexbidv A = B u j 𝒫 x y u j 𝑡 u A u j 𝒫 x y u j 𝑡 u B
4 3 2ralbidv A = B x j y x u j 𝒫 x y u j 𝑡 u A x j y x u j 𝒫 x y u j 𝑡 u B
5 4 rabbidv A = B j Top | x j y x u j 𝒫 x y u j 𝑡 u A = j Top | x j y x u j 𝒫 x y u j 𝑡 u B
6 df-lly Locally A = j Top | x j y x u j 𝒫 x y u j 𝑡 u A
7 df-lly Locally B = j Top | x j y x u j 𝒫 x y u j 𝑡 u B
8 5 6 7 3eqtr4g A = B Locally A = Locally B