Metamath Proof Explorer


Theorem llyidm

Description: Idempotence of the "locally" predicate, i.e. being "locally A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyidm Locally Locally A = Locally A

Proof

Step Hyp Ref Expression
1 llytop j Locally Locally A j Top
2 llyi j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A
3 simprr3 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A j 𝑡 u Locally A
4 simprl j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A u j
5 ssidd j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A u u
6 1 3ad2ant1 j Locally Locally A x j y x j Top
7 6 adantr j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A j Top
8 restopn2 j Top u j u j 𝑡 u u j u u
9 7 4 8 syl2anc j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A u j 𝑡 u u j u u
10 4 5 9 mpbir2and j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A u j 𝑡 u
11 simprr2 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A y u
12 llyi j 𝑡 u Locally A u j 𝑡 u y u v j 𝑡 u v u y v j 𝑡 u 𝑡 v A
13 3 10 11 12 syl3anc j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j 𝑡 u v u y v j 𝑡 u 𝑡 v A
14 restopn2 j Top u j v j 𝑡 u v j v u
15 7 4 14 syl2anc j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j 𝑡 u v j v u
16 simpl v j v u v j
17 15 16 syl6bi j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j 𝑡 u v j
18 simprl j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A v j
19 simprr1 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A v u
20 simprr1 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A u x
21 20 adantr j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A u x
22 19 21 sstrd j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A v x
23 velpw v 𝒫 x v x
24 22 23 sylibr j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A v 𝒫 x
25 18 24 elind j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A v j 𝒫 x
26 simprr2 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A y v
27 7 adantr j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A j Top
28 simplrl j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A u j
29 restabs j Top v u u j j 𝑡 u 𝑡 v = j 𝑡 v
30 27 19 28 29 syl3anc j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A j 𝑡 u 𝑡 v = j 𝑡 v
31 simprr3 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A j 𝑡 u 𝑡 v A
32 30 31 eqeltrrd j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A j 𝑡 v A
33 25 26 32 jca32 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A v j 𝒫 x y v j 𝑡 v A
34 33 ex j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j v u y v j 𝑡 u 𝑡 v A v j 𝒫 x y v j 𝑡 v A
35 17 34 syland j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j 𝑡 u v u y v j 𝑡 u 𝑡 v A v j 𝒫 x y v j 𝑡 v A
36 35 reximdv2 j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j 𝑡 u v u y v j 𝑡 u 𝑡 v A v j 𝒫 x y v j 𝑡 v A
37 13 36 mpd j Locally Locally A x j y x u j u x y u j 𝑡 u Locally A v j 𝒫 x y v j 𝑡 v A
38 2 37 rexlimddv j Locally Locally A x j y x v j 𝒫 x y v j 𝑡 v A
39 38 3expb j Locally Locally A x j y x v j 𝒫 x y v j 𝑡 v A
40 39 ralrimivva j Locally Locally A x j y x v j 𝒫 x y v j 𝑡 v A
41 islly j Locally A j Top x j y x v j 𝒫 x y v j 𝑡 v A
42 1 40 41 sylanbrc j Locally Locally A j Locally A
43 42 ssriv Locally Locally A Locally A
44 llyrest j Locally A x j j 𝑡 x Locally A
45 44 adantl j Locally A x j j 𝑡 x Locally A
46 llytop j Locally A j Top
47 46 ssriv Locally A Top
48 47 a1i Locally A Top
49 45 48 restlly Locally A Locally Locally A
50 49 mptru Locally A Locally Locally A
51 43 50 eqssi Locally Locally A = Locally A