Metamath Proof Explorer


Theorem llynlly

Description: A locally A space is n-locally A : the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llynlly J Locally A J N-Locally A

Proof

Step Hyp Ref Expression
1 llytop J Locally A J Top
2 llyi J Locally A x J y x u J u x y u J 𝑡 u A
3 simpl1 J Locally A x J y x u J u x y u J 𝑡 u A J Locally A
4 3 1 syl J Locally A x J y x u J u x y u J 𝑡 u A J Top
5 simprl J Locally A x J y x u J u x y u J 𝑡 u A u J
6 simprr2 J Locally A x J y x u J u x y u J 𝑡 u A y u
7 opnneip J Top u J y u u nei J y
8 4 5 6 7 syl3anc J Locally A x J y x u J u x y u J 𝑡 u A u nei J y
9 simprr1 J Locally A x J y x u J u x y u J 𝑡 u A u x
10 velpw u 𝒫 x u x
11 9 10 sylibr J Locally A x J y x u J u x y u J 𝑡 u A u 𝒫 x
12 8 11 elind J Locally A x J y x u J u x y u J 𝑡 u A u nei J y 𝒫 x
13 simprr3 J Locally A x J y x u J u x y u J 𝑡 u A J 𝑡 u A
14 2 12 13 reximssdv J Locally A x J y x u nei J y 𝒫 x J 𝑡 u A
15 14 3expb J Locally A x J y x u nei J y 𝒫 x J 𝑡 u A
16 15 ralrimivva J Locally A x J y x u nei J y 𝒫 x J 𝑡 u A
17 isnlly J N-Locally A J Top x J y x u nei J y 𝒫 x J 𝑡 u A
18 1 16 17 sylanbrc J Locally A J N-Locally A