Database
BASIC TOPOLOGY
Topology
Local topological properties
llyss
Next ⟩
nllyss
Metamath Proof Explorer
Ascii
Unicode
Theorem
llyss
Description:
The "locally" predicate respects inclusion.
(Contributed by
Mario Carneiro
, 2-Mar-2015)
Ref
Expression
Assertion
llyss
⊢
A
⊆
B
→
Locally
A
⊆
Locally
B
Proof
Step
Hyp
Ref
Expression
1
ssel
⊢
A
⊆
B
→
j
↾
𝑡
u
∈
A
→
j
↾
𝑡
u
∈
B
2
1
anim2d
⊢
A
⊆
B
→
y
∈
u
∧
j
↾
𝑡
u
∈
A
→
y
∈
u
∧
j
↾
𝑡
u
∈
B
3
2
reximdv
⊢
A
⊆
B
→
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
A
→
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
B
4
3
ralimdv
⊢
A
⊆
B
→
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
A
→
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
B
5
4
ralimdv
⊢
A
⊆
B
→
∀
x
∈
j
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
A
→
∀
x
∈
j
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
B
6
5
anim2d
⊢
A
⊆
B
→
j
∈
Top
∧
∀
x
∈
j
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
A
→
j
∈
Top
∧
∀
x
∈
j
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
B
7
islly
⊢
j
∈
Locally
A
↔
j
∈
Top
∧
∀
x
∈
j
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
A
8
islly
⊢
j
∈
Locally
B
↔
j
∈
Top
∧
∀
x
∈
j
∀
y
∈
x
∃
u
∈
j
∩
𝒫
x
y
∈
u
∧
j
↾
𝑡
u
∈
B
9
6
7
8
3imtr4g
⊢
A
⊆
B
→
j
∈
Locally
A
→
j
∈
Locally
B
10
9
ssrdv
⊢
A
⊆
B
→
Locally
A
⊆
Locally
B