Metamath Proof Explorer


Theorem llyss

Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyss A B Locally A Locally B

Proof

Step Hyp Ref Expression
1 ssel A B j 𝑡 u A j 𝑡 u B
2 1 anim2d A B y u j 𝑡 u A y u j 𝑡 u B
3 2 reximdv A B u j 𝒫 x y u j 𝑡 u A u j 𝒫 x y u j 𝑡 u B
4 3 ralimdv A B y x u j 𝒫 x y u j 𝑡 u A y x u j 𝒫 x y u j 𝑡 u B
5 4 ralimdv A B x j y x u j 𝒫 x y u j 𝑡 u A x j y x u j 𝒫 x y u j 𝑡 u B
6 5 anim2d A B j Top x j y x u j 𝒫 x y u j 𝑡 u A j Top x j y x u j 𝒫 x y u j 𝑡 u B
7 islly j Locally A j Top x j y x u j 𝒫 x y u j 𝑡 u A
8 islly j Locally B j Top x j y x u j 𝒫 x y u j 𝑡 u B
9 6 7 8 3imtr4g A B j Locally A j Locally B
10 9 ssrdv A B Locally A Locally B