Metamath Proof Explorer


Theorem lmbr2

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses lmbr.2 φ J TopOn X
lmbr2.4 Z = M
lmbr2.5 φ M
Assertion lmbr2 φ F t J P F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u

Proof

Step Hyp Ref Expression
1 lmbr.2 φ J TopOn X
2 lmbr2.4 Z = M
3 lmbr2.5 φ M
4 1 lmbr φ F t J P F X 𝑝𝑚 P X u J P u z ran F z : z u
5 uzf : 𝒫
6 ffn : 𝒫 Fn
7 reseq2 z = j F z = F j
8 id z = j z = j
9 7 8 feq12d z = j F z : z u F j : j u
10 9 rexrn Fn z ran F z : z u j F j : j u
11 5 6 10 mp2b z ran F z : z u j F j : j u
12 pmfun F X 𝑝𝑚 Fun F
13 12 ad2antrl φ F X 𝑝𝑚 P X Fun F
14 ffvresb Fun F F j : j u k j k dom F F k u
15 13 14 syl φ F X 𝑝𝑚 P X F j : j u k j k dom F F k u
16 15 rexbidv φ F X 𝑝𝑚 P X j F j : j u j k j k dom F F k u
17 3 adantr φ F X 𝑝𝑚 P X M
18 2 rexuz3 M j Z k j k dom F F k u j k j k dom F F k u
19 17 18 syl φ F X 𝑝𝑚 P X j Z k j k dom F F k u j k j k dom F F k u
20 16 19 bitr4d φ F X 𝑝𝑚 P X j F j : j u j Z k j k dom F F k u
21 11 20 syl5bb φ F X 𝑝𝑚 P X z ran F z : z u j Z k j k dom F F k u
22 21 imbi2d φ F X 𝑝𝑚 P X P u z ran F z : z u P u j Z k j k dom F F k u
23 22 ralbidv φ F X 𝑝𝑚 P X u J P u z ran F z : z u u J P u j Z k j k dom F F k u
24 23 pm5.32da φ F X 𝑝𝑚 P X u J P u z ran F z : z u F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
25 df-3an F X 𝑝𝑚 P X u J P u z ran F z : z u F X 𝑝𝑚 P X u J P u z ran F z : z u
26 df-3an F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
27 24 25 26 3bitr4g φ F X 𝑝𝑚 P X u J P u z ran F z : z u F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
28 4 27 bitrd φ F t J P F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u