Metamath Proof Explorer


Theorem lmbrf

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. This version of lmbr2 presupposes that F is a function. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses lmbr.2 φ J TopOn X
lmbr2.4 Z = M
lmbr2.5 φ M
lmbrf.6 φ F : Z X
lmbrf.7 φ k Z F k = A
Assertion lmbrf φ F t J P P X u J P u j Z k j A u

Proof

Step Hyp Ref Expression
1 lmbr.2 φ J TopOn X
2 lmbr2.4 Z = M
3 lmbr2.5 φ M
4 lmbrf.6 φ F : Z X
5 lmbrf.7 φ k Z F k = A
6 1 2 3 lmbr2 φ F t J P F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
7 3anass F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
8 2 uztrn2 j Z k j k Z
9 5 eleq1d φ k Z F k u A u
10 4 fdmd φ dom F = Z
11 10 eleq2d φ k dom F k Z
12 11 biimpar φ k Z k dom F
13 12 biantrurd φ k Z F k u k dom F F k u
14 9 13 bitr3d φ k Z A u k dom F F k u
15 8 14 sylan2 φ j Z k j A u k dom F F k u
16 15 anassrs φ j Z k j A u k dom F F k u
17 16 ralbidva φ j Z k j A u k j k dom F F k u
18 17 rexbidva φ j Z k j A u j Z k j k dom F F k u
19 18 imbi2d φ P u j Z k j A u P u j Z k j k dom F F k u
20 19 ralbidv φ u J P u j Z k j A u u J P u j Z k j k dom F F k u
21 20 anbi2d φ P X u J P u j Z k j A u P X u J P u j Z k j k dom F F k u
22 toponmax J TopOn X X J
23 1 22 syl φ X J
24 cnex V
25 23 24 jctir φ X J V
26 uzssz M
27 zsscn
28 26 27 sstri M
29 2 28 eqsstri Z
30 4 29 jctir φ F : Z X Z
31 elpm2r X J V F : Z X Z F X 𝑝𝑚
32 25 30 31 syl2anc φ F X 𝑝𝑚
33 32 biantrurd φ P X u J P u j Z k j k dom F F k u F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
34 21 33 bitr2d φ F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u P X u J P u j Z k j A u
35 7 34 syl5bb φ F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u P X u J P u j Z k j A u
36 6 35 bitrd φ F t J P P X u J P u j Z k j A u