Step |
Hyp |
Ref |
Expression |
1 |
|
lmcau.1 |
|
2 |
1
|
methaus |
|
3 |
|
lmfun |
|
4 |
|
funfvbrb |
|
5 |
2 3 4
|
3syl |
|
6 |
|
id |
|
7 |
1 6
|
lmmbr |
|
8 |
7
|
biimpa |
|
9 |
8
|
simp1d |
|
10 |
|
simprr |
|
11 |
|
simplll |
|
12 |
8
|
simp2d |
|
13 |
12
|
ad2antrr |
|
14 |
|
rpre |
|
15 |
14
|
ad2antlr |
|
16 |
|
uzid |
|
17 |
16
|
ad2antrl |
|
18 |
17
|
fvresd |
|
19 |
10 17
|
ffvelrnd |
|
20 |
18 19
|
eqeltrrd |
|
21 |
|
blhalf |
|
22 |
11 13 15 20 21
|
syl22anc |
|
23 |
10 22
|
fssd |
|
24 |
|
rphalfcl |
|
25 |
8
|
simp3d |
|
26 |
|
oveq2 |
|
27 |
26
|
feq3d |
|
28 |
27
|
rexbidv |
|
29 |
28
|
rspcv |
|
30 |
24 25 29
|
syl2im |
|
31 |
30
|
impcom |
|
32 |
|
uzf |
|
33 |
|
ffn |
|
34 |
|
reseq2 |
|
35 |
|
id |
|
36 |
34 35
|
feq12d |
|
37 |
36
|
rexrn |
|
38 |
32 33 37
|
mp2b |
|
39 |
31 38
|
sylib |
|
40 |
23 39
|
reximddv |
|
41 |
40
|
ralrimiva |
|
42 |
|
iscau |
|
43 |
42
|
adantr |
|
44 |
9 41 43
|
mpbir2and |
|
45 |
44
|
ex |
|
46 |
5 45
|
sylbid |
|
47 |
46
|
ssrdv |
|