| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmcau.1 |
|
| 2 |
1
|
methaus |
|
| 3 |
|
lmfun |
|
| 4 |
|
funfvbrb |
|
| 5 |
2 3 4
|
3syl |
|
| 6 |
|
id |
|
| 7 |
1 6
|
lmmbr |
|
| 8 |
7
|
biimpa |
|
| 9 |
8
|
simp1d |
|
| 10 |
|
simprr |
|
| 11 |
|
simplll |
|
| 12 |
8
|
simp2d |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
rpre |
|
| 15 |
14
|
ad2antlr |
|
| 16 |
|
uzid |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
17
|
fvresd |
|
| 19 |
10 17
|
ffvelcdmd |
|
| 20 |
18 19
|
eqeltrrd |
|
| 21 |
|
blhalf |
|
| 22 |
11 13 15 20 21
|
syl22anc |
|
| 23 |
10 22
|
fssd |
|
| 24 |
|
rphalfcl |
|
| 25 |
8
|
simp3d |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
feq3d |
|
| 28 |
27
|
rexbidv |
|
| 29 |
28
|
rspcv |
|
| 30 |
24 25 29
|
syl2im |
|
| 31 |
30
|
impcom |
|
| 32 |
|
uzf |
|
| 33 |
|
ffn |
|
| 34 |
|
reseq2 |
|
| 35 |
|
id |
|
| 36 |
34 35
|
feq12d |
|
| 37 |
36
|
rexrn |
|
| 38 |
32 33 37
|
mp2b |
|
| 39 |
31 38
|
sylib |
|
| 40 |
23 39
|
reximddv |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
|
iscau |
|
| 43 |
42
|
adantr |
|
| 44 |
9 41 43
|
mpbir2and |
|
| 45 |
44
|
ex |
|
| 46 |
5 45
|
sylbid |
|
| 47 |
46
|
ssrdv |
|