Metamath Proof Explorer


Theorem lmcau

Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of Kreyszig p. 28. (Contributed by NM, 29-Jan-2008) (Proof shortened by Mario Carneiro, 5-May-2014)

Ref Expression
Hypothesis lmcau.1 J = MetOpen D
Assertion lmcau D ∞Met X dom t J Cau D

Proof

Step Hyp Ref Expression
1 lmcau.1 J = MetOpen D
2 1 methaus D ∞Met X J Haus
3 lmfun J Haus Fun t J
4 funfvbrb Fun t J f dom t J f t J t J f
5 2 3 4 3syl D ∞Met X f dom t J f t J t J f
6 id D ∞Met X D ∞Met X
7 1 6 lmmbr D ∞Met X f t J t J f f X 𝑝𝑚 t J f X y + u ran f u : u t J f ball D y
8 7 biimpa D ∞Met X f t J t J f f X 𝑝𝑚 t J f X y + u ran f u : u t J f ball D y
9 8 simp1d D ∞Met X f t J t J f f X 𝑝𝑚
10 simprr D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 f j : j t J f ball D x 2
11 simplll D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 D ∞Met X
12 8 simp2d D ∞Met X f t J t J f t J f X
13 12 ad2antrr D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 t J f X
14 rpre x + x
15 14 ad2antlr D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 x
16 uzid j j j
17 16 ad2antrl D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 j j
18 17 fvresd D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 f j j = f j
19 10 17 ffvelrnd D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 f j j t J f ball D x 2
20 18 19 eqeltrrd D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 f j t J f ball D x 2
21 blhalf D ∞Met X t J f X x f j t J f ball D x 2 t J f ball D x 2 f j ball D x
22 11 13 15 20 21 syl22anc D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 t J f ball D x 2 f j ball D x
23 10 22 fssd D ∞Met X f t J t J f x + j f j : j t J f ball D x 2 f j : j f j ball D x
24 rphalfcl x + x 2 +
25 8 simp3d D ∞Met X f t J t J f y + u ran f u : u t J f ball D y
26 oveq2 y = x 2 t J f ball D y = t J f ball D x 2
27 26 feq3d y = x 2 f u : u t J f ball D y f u : u t J f ball D x 2
28 27 rexbidv y = x 2 u ran f u : u t J f ball D y u ran f u : u t J f ball D x 2
29 28 rspcv x 2 + y + u ran f u : u t J f ball D y u ran f u : u t J f ball D x 2
30 24 25 29 syl2im x + D ∞Met X f t J t J f u ran f u : u t J f ball D x 2
31 30 impcom D ∞Met X f t J t J f x + u ran f u : u t J f ball D x 2
32 uzf : 𝒫
33 ffn : 𝒫 Fn
34 reseq2 u = j f u = f j
35 id u = j u = j
36 34 35 feq12d u = j f u : u t J f ball D x 2 f j : j t J f ball D x 2
37 36 rexrn Fn u ran f u : u t J f ball D x 2 j f j : j t J f ball D x 2
38 32 33 37 mp2b u ran f u : u t J f ball D x 2 j f j : j t J f ball D x 2
39 31 38 sylib D ∞Met X f t J t J f x + j f j : j t J f ball D x 2
40 23 39 reximddv D ∞Met X f t J t J f x + j f j : j f j ball D x
41 40 ralrimiva D ∞Met X f t J t J f x + j f j : j f j ball D x
42 iscau D ∞Met X f Cau D f X 𝑝𝑚 x + j f j : j f j ball D x
43 42 adantr D ∞Met X f t J t J f f Cau D f X 𝑝𝑚 x + j f j : j f j ball D x
44 9 41 43 mpbir2and D ∞Met X f t J t J f f Cau D
45 44 ex D ∞Met X f t J t J f f Cau D
46 5 45 sylbid D ∞Met X f dom t J f Cau D
47 46 ssrdv D ∞Met X dom t J Cau D