Metamath Proof Explorer


Theorem lmcl

Description: Closure of a limit. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Assertion lmcl J TopOn X F t J P P X

Proof

Step Hyp Ref Expression
1 id J TopOn X J TopOn X
2 1 lmbr J TopOn X F t J P F X 𝑝𝑚 P X u J P u y ran F y : y u
3 2 biimpa J TopOn X F t J P F X 𝑝𝑚 P X u J P u y ran F y : y u
4 3 simp2d J TopOn X F t J P P X