Metamath Proof Explorer


Theorem lmcld

Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013)

Ref Expression
Hypotheses lmff.1 Z = M
lmff.3 φ J TopOn X
lmff.4 φ M
lmcls.5 φ F t J P
lmcls.7 φ k Z F k S
lmcld.8 φ S Clsd J
Assertion lmcld φ P S

Proof

Step Hyp Ref Expression
1 lmff.1 Z = M
2 lmff.3 φ J TopOn X
3 lmff.4 φ M
4 lmcls.5 φ F t J P
5 lmcls.7 φ k Z F k S
6 lmcld.8 φ S Clsd J
7 eqid J = J
8 7 cldss S Clsd J S J
9 6 8 syl φ S J
10 toponuni J TopOn X X = J
11 2 10 syl φ X = J
12 9 11 sseqtrrd φ S X
13 1 2 3 4 5 12 lmcls φ P cls J S
14 cldcls S Clsd J cls J S = S
15 6 14 syl φ cls J S = S
16 13 15 eleqtrd φ P S