Metamath Proof Explorer


Theorem lmclim

Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 9-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmclim.2 J = TopOpen fld
lmclim.3 Z = M
Assertion lmclim M Z dom F F t J P F 𝑝𝑚 F P

Proof

Step Hyp Ref Expression
1 lmclim.2 J = TopOpen fld
2 lmclim.3 Z = M
3 3anass F 𝑝𝑚 P x + j Z k j k dom F F k F k abs P < x F 𝑝𝑚 P x + j Z k j k dom F F k F k abs P < x
4 2 uztrn2 j Z k j k Z
5 3anass k dom F F k F k abs P < x k dom F F k F k abs P < x
6 simplr M Z dom F P Z dom F
7 6 sselda M Z dom F P k Z k dom F
8 7 biantrurd M Z dom F P k Z F k F k abs P < x k dom F F k F k abs P < x
9 eqid abs = abs
10 9 cnmetdval F k P F k abs P = F k P
11 10 ancoms P F k F k abs P = F k P
12 11 breq1d P F k F k abs P < x F k P < x
13 12 pm5.32da P F k F k abs P < x F k F k P < x
14 13 ad2antlr M Z dom F P k Z F k F k abs P < x F k F k P < x
15 8 14 bitr3d M Z dom F P k Z k dom F F k F k abs P < x F k F k P < x
16 5 15 syl5bb M Z dom F P k Z k dom F F k F k abs P < x F k F k P < x
17 4 16 sylan2 M Z dom F P j Z k j k dom F F k F k abs P < x F k F k P < x
18 17 anassrs M Z dom F P j Z k j k dom F F k F k abs P < x F k F k P < x
19 18 ralbidva M Z dom F P j Z k j k dom F F k F k abs P < x k j F k F k P < x
20 19 rexbidva M Z dom F P j Z k j k dom F F k F k abs P < x j Z k j F k F k P < x
21 20 ralbidv M Z dom F P x + j Z k j k dom F F k F k abs P < x x + j Z k j F k F k P < x
22 21 pm5.32da M Z dom F P x + j Z k j k dom F F k F k abs P < x P x + j Z k j F k F k P < x
23 22 anbi2d M Z dom F F 𝑝𝑚 P x + j Z k j k dom F F k F k abs P < x F 𝑝𝑚 P x + j Z k j F k F k P < x
24 3 23 syl5bb M Z dom F F 𝑝𝑚 P x + j Z k j k dom F F k F k abs P < x F 𝑝𝑚 P x + j Z k j F k F k P < x
25 1 cnfldtopn J = MetOpen abs
26 cnxmet abs ∞Met
27 26 a1i M Z dom F abs ∞Met
28 simpl M Z dom F M
29 25 27 2 28 lmmbr3 M Z dom F F t J P F 𝑝𝑚 P x + j Z k j k dom F F k F k abs P < x
30 simpll M Z dom F F 𝑝𝑚 M
31 simpr M Z dom F F 𝑝𝑚 F 𝑝𝑚
32 eqidd M Z dom F F 𝑝𝑚 k Z F k = F k
33 2 30 31 32 clim2 M Z dom F F 𝑝𝑚 F P P x + j Z k j F k F k P < x
34 33 pm5.32da M Z dom F F 𝑝𝑚 F P F 𝑝𝑚 P x + j Z k j F k F k P < x
35 24 29 34 3bitr4d M Z dom F F t J P F 𝑝𝑚 F P