Metamath Proof Explorer


Theorem lmclimf

Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 24-Jul-2007) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmclim.2 J = TopOpen fld
lmclim.3 Z = M
Assertion lmclimf M F : Z F t J P F P

Proof

Step Hyp Ref Expression
1 lmclim.2 J = TopOpen fld
2 lmclim.3 Z = M
3 simpr M F : Z F : Z
4 uzssz M
5 zsscn
6 4 5 sstri M
7 2 6 eqsstri Z
8 cnex V
9 elpm2r V V F : Z Z F 𝑝𝑚
10 8 8 9 mpanl12 F : Z Z F 𝑝𝑚
11 3 7 10 sylancl M F : Z F 𝑝𝑚
12 fdm F : Z dom F = Z
13 eqimss2 dom F = Z Z dom F
14 3 12 13 3syl M F : Z Z dom F
15 1 2 lmclim M Z dom F F t J P F 𝑝𝑚 F P
16 14 15 syldan M F : Z F t J P F 𝑝𝑚 F P
17 11 16 mpbirand M F : Z F t J P F P