Metamath Proof Explorer


Theorem lmcls

Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmff.1 Z = M
lmff.3 φ J TopOn X
lmff.4 φ M
lmcls.5 φ F t J P
lmcls.7 φ k Z F k S
lmcls.8 φ S X
Assertion lmcls φ P cls J S

Proof

Step Hyp Ref Expression
1 lmff.1 Z = M
2 lmff.3 φ J TopOn X
3 lmff.4 φ M
4 lmcls.5 φ F t J P
5 lmcls.7 φ k Z F k S
6 lmcls.8 φ S X
7 2 1 3 lmbr2 φ F t J P F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
8 4 7 mpbid φ F X 𝑝𝑚 P X u J P u j Z k j k dom F F k u
9 8 simp3d φ u J P u j Z k j k dom F F k u
10 1 r19.2uz j Z k j k dom F F k u k Z k dom F F k u
11 inelcm F k u F k S u S
12 11 a1i φ k Z F k u F k S u S
13 5 12 mpan2d φ k Z F k u u S
14 13 adantld φ k Z k dom F F k u u S
15 14 rexlimdva φ k Z k dom F F k u u S
16 10 15 syl5 φ j Z k j k dom F F k u u S
17 16 imim2d φ P u j Z k j k dom F F k u P u u S
18 17 ralimdv φ u J P u j Z k j k dom F F k u u J P u u S
19 9 18 mpd φ u J P u u S
20 topontop J TopOn X J Top
21 2 20 syl φ J Top
22 toponuni J TopOn X X = J
23 2 22 syl φ X = J
24 6 23 sseqtrd φ S J
25 lmcl J TopOn X F t J P P X
26 2 4 25 syl2anc φ P X
27 26 23 eleqtrd φ P J
28 eqid J = J
29 28 elcls J Top S J P J P cls J S u J P u u S
30 21 24 27 29 syl3anc φ P cls J S u J P u u S
31 19 30 mpbird φ P cls J S