Metamath Proof Explorer


Theorem lmcls

Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmff.1 Z=M
lmff.3 φJTopOnX
lmff.4 φM
lmcls.5 φFtJP
lmcls.7 φkZFkS
lmcls.8 φSX
Assertion lmcls φPclsJS

Proof

Step Hyp Ref Expression
1 lmff.1 Z=M
2 lmff.3 φJTopOnX
3 lmff.4 φM
4 lmcls.5 φFtJP
5 lmcls.7 φkZFkS
6 lmcls.8 φSX
7 2 1 3 lmbr2 φFtJPFX𝑝𝑚PXuJPujZkjkdomFFku
8 4 7 mpbid φFX𝑝𝑚PXuJPujZkjkdomFFku
9 8 simp3d φuJPujZkjkdomFFku
10 1 r19.2uz jZkjkdomFFkukZkdomFFku
11 inelcm FkuFkSuS
12 11 a1i φkZFkuFkSuS
13 5 12 mpan2d φkZFkuuS
14 13 adantld φkZkdomFFkuuS
15 14 rexlimdva φkZkdomFFkuuS
16 10 15 syl5 φjZkjkdomFFkuuS
17 16 imim2d φPujZkjkdomFFkuPuuS
18 17 ralimdv φuJPujZkjkdomFFkuuJPuuS
19 9 18 mpd φuJPuuS
20 topontop JTopOnXJTop
21 2 20 syl φJTop
22 toponuni JTopOnXX=J
23 2 22 syl φX=J
24 6 23 sseqtrd φSJ
25 lmcl JTopOnXFtJPPX
26 2 4 25 syl2anc φPX
27 26 23 eleqtrd φPJ
28 eqid J=J
29 28 elcls JTopSJPJPclsJSuJPuuS
30 21 24 27 29 syl3anc φPclsJSuJPuuS
31 19 30 mpbird φPclsJS