Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013) (Revised by Mario Carneiro, 1-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmff.1 | |
|
lmff.3 | |
||
lmff.4 | |
||
lmcls.5 | |
||
lmcls.7 | |
||
lmcls.8 | |
||
Assertion | lmcls | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmff.1 | |
|
2 | lmff.3 | |
|
3 | lmff.4 | |
|
4 | lmcls.5 | |
|
5 | lmcls.7 | |
|
6 | lmcls.8 | |
|
7 | 2 1 3 | lmbr2 | |
8 | 4 7 | mpbid | |
9 | 8 | simp3d | |
10 | 1 | r19.2uz | |
11 | inelcm | |
|
12 | 11 | a1i | |
13 | 5 12 | mpan2d | |
14 | 13 | adantld | |
15 | 14 | rexlimdva | |
16 | 10 15 | syl5 | |
17 | 16 | imim2d | |
18 | 17 | ralimdv | |
19 | 9 18 | mpd | |
20 | topontop | |
|
21 | 2 20 | syl | |
22 | toponuni | |
|
23 | 2 22 | syl | |
24 | 6 23 | sseqtrd | |
25 | lmcl | |
|
26 | 2 4 25 | syl2anc | |
27 | 26 23 | eleqtrd | |
28 | eqid | |
|
29 | 28 | elcls | |
30 | 21 24 27 29 | syl3anc | |
31 | 19 30 | mpbird | |