Metamath Proof Explorer


Theorem lmcn

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)

Ref Expression
Hypotheses lmcnp.3 φ F t J P
lmcn.4 φ G J Cn K
Assertion lmcn φ G F t K G P

Proof

Step Hyp Ref Expression
1 lmcnp.3 φ F t J P
2 lmcn.4 φ G J Cn K
3 cntop1 G J Cn K J Top
4 2 3 syl φ J Top
5 toptopon2 J Top J TopOn J
6 4 5 sylib φ J TopOn J
7 lmcl J TopOn J F t J P P J
8 6 1 7 syl2anc φ P J
9 eqid J = J
10 9 cncnpi G J Cn K P J G J CnP K P
11 2 8 10 syl2anc φ G J CnP K P
12 1 11 lmcnp φ G F t K G P