Metamath Proof Explorer


Theorem lmcn2

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014)

Ref Expression
Hypotheses txlm.z Z = M
txlm.m φ M
txlm.j φ J TopOn X
txlm.k φ K TopOn Y
txlm.f φ F : Z X
txlm.g φ G : Z Y
lmcn2.fl φ F t J R
lmcn2.gl φ G t K S
lmcn2.o φ O J × t K Cn N
lmcn2.h H = n Z F n O G n
Assertion lmcn2 φ H t N R O S

Proof

Step Hyp Ref Expression
1 txlm.z Z = M
2 txlm.m φ M
3 txlm.j φ J TopOn X
4 txlm.k φ K TopOn Y
5 txlm.f φ F : Z X
6 txlm.g φ G : Z Y
7 lmcn2.fl φ F t J R
8 lmcn2.gl φ G t K S
9 lmcn2.o φ O J × t K Cn N
10 lmcn2.h H = n Z F n O G n
11 5 ffvelrnda φ n Z F n X
12 6 ffvelrnda φ n Z G n Y
13 11 12 opelxpd φ n Z F n G n X × Y
14 eqidd φ n Z F n G n = n Z F n G n
15 txtopon J TopOn X K TopOn Y J × t K TopOn X × Y
16 3 4 15 syl2anc φ J × t K TopOn X × Y
17 cntop2 O J × t K Cn N N Top
18 9 17 syl φ N Top
19 toptopon2 N Top N TopOn N
20 18 19 sylib φ N TopOn N
21 cnf2 J × t K TopOn X × Y N TopOn N O J × t K Cn N O : X × Y N
22 16 20 9 21 syl3anc φ O : X × Y N
23 22 feqmptd φ O = x X × Y O x
24 fveq2 x = F n G n O x = O F n G n
25 df-ov F n O G n = O F n G n
26 24 25 eqtr4di x = F n G n O x = F n O G n
27 13 14 23 26 fmptco φ O n Z F n G n = n Z F n O G n
28 27 10 eqtr4di φ O n Z F n G n = H
29 eqid n Z F n G n = n Z F n G n
30 1 2 3 4 5 6 29 txlm φ F t J R G t K S n Z F n G n t J × t K R S
31 7 8 30 mpbi2and φ n Z F n G n t J × t K R S
32 31 9 lmcn φ O n Z F n G n t N O R S
33 28 32 eqbrtrrd φ H t N O R S
34 df-ov R O S = O R S
35 33 34 breqtrrdi φ H t N R O S