| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmcnp.3 |  | 
						
							| 2 |  | lmcnp.4 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 3 4 | cnpf |  | 
						
							| 6 | 2 5 | syl |  | 
						
							| 7 |  | cnptop1 |  | 
						
							| 8 | 2 7 | syl |  | 
						
							| 9 |  | toptopon2 |  | 
						
							| 10 | 8 9 | sylib |  | 
						
							| 11 |  | nnuz |  | 
						
							| 12 |  | 1zzd |  | 
						
							| 13 | 10 11 12 | lmbr2 |  | 
						
							| 14 | 1 13 | mpbid |  | 
						
							| 15 | 14 | simp1d |  | 
						
							| 16 | 8 | uniexd |  | 
						
							| 17 |  | cnex |  | 
						
							| 18 |  | elpm2g |  | 
						
							| 19 | 16 17 18 | sylancl |  | 
						
							| 20 | 15 19 | mpbid |  | 
						
							| 21 | 20 | simpld |  | 
						
							| 22 |  | fco |  | 
						
							| 23 | 6 21 22 | syl2anc |  | 
						
							| 24 | 23 | ffdmd |  | 
						
							| 25 | 23 | fdmd |  | 
						
							| 26 | 20 | simprd |  | 
						
							| 27 | 25 26 | eqsstrd |  | 
						
							| 28 |  | cnptop2 |  | 
						
							| 29 | 2 28 | syl |  | 
						
							| 30 | 29 | uniexd |  | 
						
							| 31 |  | elpm2g |  | 
						
							| 32 | 30 17 31 | sylancl |  | 
						
							| 33 | 24 27 32 | mpbir2and |  | 
						
							| 34 | 14 | simp2d |  | 
						
							| 35 | 6 34 | ffvelcdmd |  | 
						
							| 36 | 14 | simp3d |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 |  | cnpimaex |  | 
						
							| 39 | 38 | 3expb |  | 
						
							| 40 | 2 39 | sylan |  | 
						
							| 41 |  | r19.29 |  | 
						
							| 42 |  | pm3.45 |  | 
						
							| 43 | 42 | imp |  | 
						
							| 44 | 43 | reximi |  | 
						
							| 45 | 41 44 | syl |  | 
						
							| 46 | 6 | ad3antrrr |  | 
						
							| 47 | 46 | ffnd |  | 
						
							| 48 |  | simplrl |  | 
						
							| 49 |  | elssuni |  | 
						
							| 50 | 48 49 | syl |  | 
						
							| 51 |  | fnfvima |  | 
						
							| 52 | 51 | 3expia |  | 
						
							| 53 | 47 50 52 | syl2anc |  | 
						
							| 54 | 21 | ad2antrr |  | 
						
							| 55 |  | fvco3 |  | 
						
							| 56 | 54 55 | sylan |  | 
						
							| 57 | 56 | eleq1d |  | 
						
							| 58 | 53 57 | sylibrd |  | 
						
							| 59 |  | simplrr |  | 
						
							| 60 | 59 | sseld |  | 
						
							| 61 | 58 60 | syld |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 | 25 | ad3antrrr |  | 
						
							| 64 | 62 63 | eleqtrrd |  | 
						
							| 65 | 61 64 | jctild |  | 
						
							| 66 | 65 | expimpd |  | 
						
							| 67 | 66 | ralimdv |  | 
						
							| 68 | 67 | reximdv |  | 
						
							| 69 | 68 | expr |  | 
						
							| 70 | 69 | impcomd |  | 
						
							| 71 | 70 | rexlimdva |  | 
						
							| 72 | 45 71 | syl5 |  | 
						
							| 73 | 37 40 72 | mp2and |  | 
						
							| 74 | 73 | expr |  | 
						
							| 75 | 74 | ralrimiva |  | 
						
							| 76 |  | toptopon2 |  | 
						
							| 77 | 29 76 | sylib |  | 
						
							| 78 | 77 11 12 | lmbr2 |  | 
						
							| 79 | 33 35 75 78 | mpbir3and |  |