Step |
Hyp |
Ref |
Expression |
1 |
|
lmcnp.3 |
|
2 |
|
lmcnp.4 |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
cnpf |
|
6 |
2 5
|
syl |
|
7 |
|
cnptop1 |
|
8 |
2 7
|
syl |
|
9 |
|
toptopon2 |
|
10 |
8 9
|
sylib |
|
11 |
|
nnuz |
|
12 |
|
1zzd |
|
13 |
10 11 12
|
lmbr2 |
|
14 |
1 13
|
mpbid |
|
15 |
14
|
simp1d |
|
16 |
8
|
uniexd |
|
17 |
|
cnex |
|
18 |
|
elpm2g |
|
19 |
16 17 18
|
sylancl |
|
20 |
15 19
|
mpbid |
|
21 |
20
|
simpld |
|
22 |
|
fco |
|
23 |
6 21 22
|
syl2anc |
|
24 |
23
|
ffdmd |
|
25 |
23
|
fdmd |
|
26 |
20
|
simprd |
|
27 |
25 26
|
eqsstrd |
|
28 |
|
cnptop2 |
|
29 |
2 28
|
syl |
|
30 |
29
|
uniexd |
|
31 |
|
elpm2g |
|
32 |
30 17 31
|
sylancl |
|
33 |
24 27 32
|
mpbir2and |
|
34 |
14
|
simp2d |
|
35 |
6 34
|
ffvelrnd |
|
36 |
14
|
simp3d |
|
37 |
36
|
adantr |
|
38 |
|
cnpimaex |
|
39 |
38
|
3expb |
|
40 |
2 39
|
sylan |
|
41 |
|
r19.29 |
|
42 |
|
pm3.45 |
|
43 |
42
|
imp |
|
44 |
43
|
reximi |
|
45 |
41 44
|
syl |
|
46 |
6
|
ad3antrrr |
|
47 |
46
|
ffnd |
|
48 |
|
simplrl |
|
49 |
|
elssuni |
|
50 |
48 49
|
syl |
|
51 |
|
fnfvima |
|
52 |
51
|
3expia |
|
53 |
47 50 52
|
syl2anc |
|
54 |
21
|
ad2antrr |
|
55 |
|
fvco3 |
|
56 |
54 55
|
sylan |
|
57 |
56
|
eleq1d |
|
58 |
53 57
|
sylibrd |
|
59 |
|
simplrr |
|
60 |
59
|
sseld |
|
61 |
58 60
|
syld |
|
62 |
|
simpr |
|
63 |
25
|
ad3antrrr |
|
64 |
62 63
|
eleqtrrd |
|
65 |
61 64
|
jctild |
|
66 |
65
|
expimpd |
|
67 |
66
|
ralimdv |
|
68 |
67
|
reximdv |
|
69 |
68
|
expr |
|
70 |
69
|
impcomd |
|
71 |
70
|
rexlimdva |
|
72 |
45 71
|
syl5 |
|
73 |
37 40 72
|
mp2and |
|
74 |
73
|
expr |
|
75 |
74
|
ralrimiva |
|
76 |
|
toptopon2 |
|
77 |
29 76
|
sylib |
|
78 |
77 11 12
|
lmbr2 |
|
79 |
33 35 75 78
|
mpbir3and |
|