Metamath Proof Explorer


Theorem lmconst

Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007) (Revised by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypothesis lmconst.2 Z = M
Assertion lmconst J TopOn X P X M Z × P t J P

Proof

Step Hyp Ref Expression
1 lmconst.2 Z = M
2 simp2 J TopOn X P X M P X
3 simp3 J TopOn X P X M M
4 uzid M M M
5 3 4 syl J TopOn X P X M M M
6 5 1 eleqtrrdi J TopOn X P X M M Z
7 idd J TopOn X P X M k M P u P u
8 7 ralrimdva J TopOn X P X M P u k M P u
9 fveq2 j = M j = M
10 9 raleqdv j = M k j P u k M P u
11 10 rspcev M Z k M P u j Z k j P u
12 6 8 11 syl6an J TopOn X P X M P u j Z k j P u
13 12 ralrimivw J TopOn X P X M u J P u j Z k j P u
14 simp1 J TopOn X P X M J TopOn X
15 fconst6g P X Z × P : Z X
16 2 15 syl J TopOn X P X M Z × P : Z X
17 fvconst2g P X k Z Z × P k = P
18 2 17 sylan J TopOn X P X M k Z Z × P k = P
19 14 1 3 16 18 lmbrf J TopOn X P X M Z × P t J P P X u J P u j Z k j P u
20 2 13 19 mpbir2and J TopOn X P X M Z × P t J P