Metamath Proof Explorer


Theorem lmcvg

Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses lmcvg.1 Z = M
lmcvg.3 φ P U
lmcvg.4 φ M
lmcvg.5 φ F t J P
lmcvg.6 φ U J
Assertion lmcvg φ j Z k j F k U

Proof

Step Hyp Ref Expression
1 lmcvg.1 Z = M
2 lmcvg.3 φ P U
3 lmcvg.4 φ M
4 lmcvg.5 φ F t J P
5 lmcvg.6 φ U J
6 eleq2 u = U P u P U
7 eleq2 u = U F k u F k U
8 7 rexralbidv u = U j Z k j F k u j Z k j F k U
9 6 8 imbi12d u = U P u j Z k j F k u P U j Z k j F k U
10 lmrcl F t J P J Top
11 4 10 syl φ J Top
12 toptopon2 J Top J TopOn J
13 11 12 sylib φ J TopOn J
14 13 1 3 lmbr2 φ F t J P F J 𝑝𝑚 P J u J P u j Z k j k dom F F k u
15 4 14 mpbid φ F J 𝑝𝑚 P J u J P u j Z k j k dom F F k u
16 15 simp3d φ u J P u j Z k j k dom F F k u
17 simpr k dom F F k u F k u
18 17 ralimi k j k dom F F k u k j F k u
19 18 reximi j Z k j k dom F F k u j Z k j F k u
20 19 imim2i P u j Z k j k dom F F k u P u j Z k j F k u
21 20 ralimi u J P u j Z k j k dom F F k u u J P u j Z k j F k u
22 16 21 syl φ u J P u j Z k j F k u
23 9 22 5 rspcdva φ P U j Z k j F k U
24 2 23 mpd φ j Z k j F k U