Step |
Hyp |
Ref |
Expression |
1 |
|
lmdvg.1 |
|
2 |
|
lmdvg.2 |
|
3 |
|
lmdvg.3 |
|
4 |
|
nnuz |
|
5 |
|
1zzd |
|
6 |
|
rge0ssre |
|
7 |
|
fss |
|
8 |
1 6 7
|
sylancl |
|
9 |
8
|
adantr |
|
10 |
2
|
ralrimiva |
|
11 |
|
fveq2 |
|
12 |
|
fvoveq1 |
|
13 |
11 12
|
breq12d |
|
14 |
13
|
cbvralvw |
|
15 |
10 14
|
sylib |
|
16 |
15
|
r19.21bi |
|
17 |
16
|
adantlr |
|
18 |
|
simpr |
|
19 |
|
fveq2 |
|
20 |
19
|
breq1d |
|
21 |
20
|
cbvralvw |
|
22 |
21
|
rexbii |
|
23 |
18 22
|
sylib |
|
24 |
4 5 9 17 23
|
climsup |
|
25 |
|
nnex |
|
26 |
|
fex |
|
27 |
1 25 26
|
sylancl |
|
28 |
27
|
adantr |
|
29 |
|
ltso |
|
30 |
29
|
supex |
|
31 |
30
|
a1i |
|
32 |
|
simpr |
|
33 |
|
breldmg |
|
34 |
28 31 32 33
|
syl3anc |
|
35 |
24 34
|
syldan |
|
36 |
3 35
|
mtand |
|
37 |
|
ralnex |
|
38 |
36 37
|
sylibr |
|
39 |
|
simplr |
|
40 |
8
|
adantr |
|
41 |
40
|
ffvelrnda |
|
42 |
39 41
|
ltnled |
|
43 |
42
|
rexbidva |
|
44 |
|
rexnal |
|
45 |
43 44
|
bitrdi |
|
46 |
45
|
ralbidva |
|
47 |
38 46
|
mpbird |
|
48 |
47
|
r19.21bi |
|
49 |
39
|
ad2antrr |
|
50 |
41
|
ad2antrr |
|
51 |
40
|
ad3antrrr |
|
52 |
|
uznnssnn |
|
53 |
52
|
ad3antlr |
|
54 |
|
simpr |
|
55 |
53 54
|
sseldd |
|
56 |
51 55
|
ffvelrnd |
|
57 |
|
simplr |
|
58 |
|
simp-4l |
|
59 |
|
simpllr |
|
60 |
|
simpr |
|
61 |
8
|
ad3antrrr |
|
62 |
|
fzssnn |
|
63 |
62
|
ad3antlr |
|
64 |
|
simpr |
|
65 |
63 64
|
sseldd |
|
66 |
61 65
|
ffvelrnd |
|
67 |
|
simplll |
|
68 |
|
fzssnn |
|
69 |
68
|
ad3antlr |
|
70 |
|
simpr |
|
71 |
69 70
|
sseldd |
|
72 |
67 71 16
|
syl2anc |
|
73 |
60 66 72
|
monoord |
|
74 |
58 59 54 73
|
syl21anc |
|
75 |
49 50 56 57 74
|
ltletrd |
|
76 |
75
|
ralrimiva |
|
77 |
76
|
ex |
|
78 |
77
|
reximdva |
|
79 |
48 78
|
mpd |
|
80 |
79
|
ralrimiva |
|